Ladybird beetles; chemical ecology; integrated pest management; trophic interactions; semiochemicals; communication; Coccinelles; écologie chimique; lutte intégrée; interactions trophiques; sémiochimiques
Abstract :
[en] This paper reviews the chemical ecology of ladybird beetles (Coleoptera: Coccinellidae) to present the role of semiochemicals involved in plant-ladybird, prey-ladybird and predator-ladybird interactions. Ladybird beetles use these compounds to locate their prey, mate, protect themselves from predation or cannibalism, find a shelter to overwinter or ensure a better survival for their offspring. Thorough studies on ladybird behaviours towards these compounds could lead to their practical implementation in integrated strategies using ladybirds to control pests, like aphids or mealybugs. [fr] Cet article présente une synthèse de l’écologie chimique des coccinelles (Coleoptera : Coccinellidae) en vue de présenter le rôle des sémiochimiques impliqués dans les relations plante-coccinelle, proie-coccinelle et prédateur-coccinelle. Les coccinelles utilisent ces composés pour localiser leurs proies, s’accoupler, se protéger de la prédation ou du cannibalisme, trouver un abri où passer l’hiver ou assurer une meilleure survie pour leur descendance. L’étude approfondie des comportements des coccinelles vis-à-vis de ces molécules pourrait aboutir à leur utilisation en lutte biologique en maximisant l’efficacité des coccinelles dans le contrôle des ravageurs, comme les pucerons ou les cochenilles.
Acar E.B., Medina J.C, Lee M.L. & Booth G.M., 2001. Olfactory behaviour of convergent lady beetles (Coleoptera: Coccinellidae) to alarm pheromone of green peach aphid (Hemiptera: Aphididae). Can. Entomol., 133(3), 389-397.
Agarwala B.K. & Dixon A.F.G., 1991. Cannibalism and interspecific predation in ladybirds. In: Polgar L., Chambers R.J., Dixon A.F.G. & Hodek I., eds. Behaviour and impact of aphidophaga. The Hague, The Netherlands: SPB Academic Publishing, 95-102.
Agarwala B.K., Bhattacharya S. & Bardhanroy P., 1998. Who eats whose eggs? Intra-versus inter-specific interactions in starving ladybird beetles predaceous on aphids. Ethology Ecol. Evol., 10, 361-368.
Agarwala B.K. & Yasuda H., 2001. Overlapping oviposition and chemical defense of eggs in two co-occurring species of ladybird predators of aphids. J. Ethology, 19, 47-53.
Agarwala B.K., Yasuda H. & Kajita Y, 2003. Effect of conspecific and heterospecific feces on foraging and oviposition of two predatory ladybirds: role of fecal cues in predator avoidance. J. Chem. Ecol., 29(2), 357-376.
al Abassi S. et al., 1998. Ladybird beetle odour identified and found to be responsible for attraction between adults. Cell. Mol. Life Sci., 54, 876-879.
al Abassi S. et al., 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J. Chem. Ecol., 26(7), 1765-1771.
al Abassi S. et al., 2001. Response of the ladybird parasitoid Dinocampus coccinellae to toxic alkaloids from the seven-spot ladybird, Coccinella septempunctata. J. Chem. Ecol., 27(1), 33-43.
Alam N. et al., 2002. A new alkaloid from two coccinellid beetles Harmonia axyridis and Aiolocaria hexaspilota. Bull. Korean Chem. Soc, 23,497-499.
Aldrich J.R., 1999. Part II. Beneficials: predators. In: HardieJ. & Minks A.K., eds. Pheromones of non-lepidopteran insects associated with agricultural plants. Oxon, UK: CAB International, 357-381.
Alhmedi A., Francis F & Haubruge E., 2007. Olfactory responses of the multicolored Asian lady beetle, Harmonia axyridis to aphid and host plant volatile releases. In: Proceedings of the 23rd International Society of Chemical Ecology, 22-26 July, Jena, Germany, 232.
Attygalle A.B. et al., 1993a. Azamacrolides: a family of alkaloids from the pupal defensive secretion of a ladybird beetle (Epilachna varivestris). Proc. Natl Acad. Sci. USA, 90, 5204-5208.
Ayer W.A., Bennett M.J., Browne L.M. & Purdham J.T., 1976. Defensive substances of Coccinella transverso-guttata and Hippodamia caseyi, ladybugs indigenous to western Canada. Can. J. Chem. Ecol., 54, 1807-1813.
Ayer W.A. & Browne L.M., 1977. The ladybug alkaloids including synthesis and biosynthesis. Heterocycles, 7, 1.
Bezzerides A.L., McGraw K.J., Parker R.S. & Husseini J., 2007. Elytra color as a signal defense in the Asian ladybird beetle Harmonia axyridis. Behav. Ecol. Sociobiol., 61, 1401-1408.
Bhatkar A.P, 1982. Orientation and defense of ladybeetles (Coleoptera, Coccinellidae) following ant trail in search of aphids. Folia Entomol. Mex., 53, 75-85.
Birkett M.A. et al., 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl Acad. Sci. USA, 97(16), 9329-9334.
Braconnier M.F., Braekman J.C., Daloze D. & Pasteels J.M., 1985. (Z)-1,17-diaminooctadec-9-ene, a novel aliphatic diamine from Coccinellidae. Experientia, 41, 519-520.
Braekman J.-C. et al., 1999. New piperidine alkaloids from two ladybird beetles of the genus Calvia (Coccinellidae). Eur. J. Org. Chem., 7, 1749-1755.
Brossut R., 1996. Phéromones. La communication chimique chez les animaux. Paris: CNRS éditions, 143.
Brown W.V. & Moore B.P, 1982. The defensive alkaloids of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Aust. J. Chem., 35, 1255-1261.
Brown A.E., Riddick E.W., Aldrich J.R. & Holmes W.E., 2006. Identification of (-)-β-caryophyllene as a gender-specific terpene produced by the multicoloured Asian lady beetle. J. Chem. Ecol., 32, 2489-2499.
Cai L., Koziel J.A. & O'Neal M.E., 2007. Determination of characteristic odorants from Harmonia axyridis beetles using in vivo solid-phase microextraction and multidimentional gas chromatography-mass spectrometry-olfactometry. J. Chromatogr., 1147,66-78.
Camarano S., González A. & Rossini C, 2006. Chemical defense of the ladybird beetle Epilachna paenulata. Chemoecology, 16, 179-184.
Carter M.C. & Dixon A.F.G., 1984. Honeydew: an arrestant stimulus for coccinellids. Ecol. Entomol., 9, 383-387.
Cudjoe E., Wiederkehr T.B. & Brindle I.D., 2005. Headspace gas chromatography-mass spectrometry: a fast approach to the identification and determination of 2-alkyl-3-methoxypyrazine pheromones in ladybugs. Analyst, 130, 152-155.
Daloze D., Braekman J.C. & Pasteels J.M., 1994. Ladybird defense alkaloids: structural, chemotaxonomic and biosyntheticaspects (Col.: Coccinellidae).Chemoecology, 5, 3/4, 173-183.
Dawson G.W. et al., 1984. Natural inhibition of aphid alarm pheromone. Entomol. Exp. Appl., 36, 197-199.
Dawson G.W. et al., 1989. The aphid sex pheromone. Pure Appl. Chem., 61, 555-558.
Dixon A.F.G. & Agarwala B.K., 1999. Ladybird-induced life-history changes in aphids. Proc. R. Soc. London B, 266, 1549-1553.
Doumbia M., Hemptinne J.-L. & Dixon A.F.G., 1998. Assessment of patch quality by ladybirds: role of larval tracks. Oecologia, 113,197-202.
Eisner T. et al., 1986. Defensive alkaloid in the blood of Mexican bean beetle (Epilachna varivestis). Experientia, 42, 204-207.
Eisner T. et al., 1994. Defensive use of acquired substance (carminic acid) by predaceous insect larvae. Experientia, 50, 610-615.
Enders D. & Bartzen D., 1991.Enantioselective total synthesis of harmonine, a defense alkaloid of ladybugs (Coleoptera: Coccinellidae). Liebigs Ann. Chem., 6,659-674.
Evans E.W. & Richards D.R., 1997. Managing the dispersal of ladybird beetles (Col.: Coccinellidae): use of artificial honeydew to manipulate spatial distributions. Entomophaga, 42, 93-102.
Francis F., Haubruge E., Hastir P. & Gaspar C, 2001. Effect of aphid host plant on development and reproduction of the third trophic level, the predator Adalia bipunctata (Coleoptera, Coccinellidae). Environ. Entomol., 30, 947-952.
Francis F, Lognay G. & Haubruge E., 2004. Olfactory responses to aphid and host plant volatile releases: (E)-P-farnesene an effective kairomone for the predator Adalia bipunctata. J. Chem. Ecol., 30(4), 741-755.
Francis F. et al., 2005. Is the (E)-P-farnesene only volatile terpenoid in aphids? J. Appl. Entomol., 129(1), 6-11.
Giles K.L. et al., 2002. Host plants affect predator fitness via the nutritional value of herbivore prey: investigation of a plant-aphid-ladybeetle system. Biocontrol, 47, 1-21.
Girling R.D. & Hassall M., 2008. Behavioural responses of the seven-spot ladybird Coccinella septempunctata to plant headspace chemicals collected from four crop Brassicas andArabidopsis thaliana, infested with Myzus persicae. Agric. For. Entomol., 10, 297-306.
Greany P.D. & Hagen K.S., 1981. Prey selection. In: Nordlund D.A., Jones R.L. & Lewis W.J., eds. Semiochemicals: their role in pest control. New York, USA: John Wiley & Sons, 121-135.
Guilford T., Nicol C, Rothschild M. & Moore B.P., 1987. The biological roles of pyrazines: evidence for a warning odour function. Biol. J. Linnean Soc, 31, 113-128.
Hagen K.S., 1962. Biology and ecology of predaceous Coccinellidae. Annu. Rev. Entomol., 7, 289-326.
Hamilton R.M., Dogan E.B., Schaalje G.B. & Booth G.M., 1999. Olfactory response of the lady beetle Hippodamia convergens (Coleoptera: Coccinellidae) to prey related odors, including a scanning electron microscopy study of the antennal sensilla. Environ. Entomol., 28(5), 812-822.
Han B.-Y. & Chen Z.-M., 2002a. Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J. Appl. Entomol., 126,497-500.
Han B.-Y. & Chen Z.-M., 2002b. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol., 28(11), 2203-2219.
Han B.-Y. & Chen Z.-M., 2002c. Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J. Agric. Food Chem., 50, 2571-2575.
Heidari M. & Copland M.J.W., 1993. Honeydew: a food resource or arrestant for the mealybug predator Cryptolaemus montrouzieri? Entomophaga, 38(1), 63-68.
Heit G., Castresana J., Puhl L. & Mareggiani G., 2005. Role of volatiles emitted by cultivated and wild Solanaceae in foraging behaviour of coccinellid predators. IDESIA, 23(3), 13-19.
Hemptinne J.-L., Dixon A.F.G. & Lognay G., 1996. Searching behaviour and mate recognition by males of the two-spot ladybird beetle, Adalia bipunctata. Ecol. Entomol., 21, 165-170.
Hemptinne J.-L., Lognay G. & Dixon A.F.G., 1998. Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: role of chemical and behavioural cues. J. Insect Physiol., 44, 1163-1171.
Hemptinne J.-L., Lognay G., Gauthier C. & Dixon A.F.G., 2000a. Role of surface chemical signals in egg cannibalism and intraguild predation in ladybirds (Coleoptera: Coccinellidae). Chemoecology, 10(3), 123-128.
Hemptinne J.-L., Gaudin M., Dixon A.F.G. & LognayG., 2000b. Social feeding in ladybird beetles: adaptive significance and mechanism. Chemoecology, 10(3), 149-152.
Hemptinne J.-L., Lognay G., Doumbia M. & Dixon A.F.G.,2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology, 11(1), 43-47.
Henson R.D. et al., 1975. Identification of precoccinellin in the ladybird beetle, Coleomegilla maculata. Experientia, 31, 145.
Hodek I. & Honek A., 1996. Ecology of Coccinellidae. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Huang Q. et al., 1998. Chilocorine C: a new "dimeric" alkaloid from a coccinellid beetle, Chilocorus cacti. J. Nat. Prod., 61, 598-601.
Ide T., Suzuki N. & Katayama N., 2007. The use of honeydew in foraging for aphids by larvae of the ladybird beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Ecol. Entomol., 32,455-460.
James D.G., 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol., 31,481-495.
Jiggins C, Majerus M.E.N. & Gough U., 1993. Ant defense of colonies of Aphis fabae Scopoli (Hemiptera: Aphididae), against predation by ladybirds. Brit. J. Entomol. Nat. Hist., 6, 129-138.
Kazana E. et al., 2007. The cabbage aphid: a walking mustard oil bomb. Proc. R. Soc. London B, 274, 2271-2277.
King G.K. & Meinwald J., 1996. Review of the defensive chemistry of Coccinellids. Chem. Rev., 96, 1105-1122.
Kunert G. & Weisser W.W., 2005. The importance of antennae for pea aphid wing induction in the presence of natural enemies. Bull. Entomol. Res., 95(2), 125-131.
Laubertie E. et al., 2006. The immediate source of the oviposition-deterring pheromone produced by larvae of Adalia bipunctata (L.) (Coleoptera: Coccinellidae). J. Insect Behav., 19(2), 231-240.
Laurent P., Braekman J.-C, Daloze D. & Pasteels J.-M., 2002. Chilocorine D, a novel heptacyclic alkaloid from a coccinellid beetle (Chilocorus renipustulatus). Tetrahedron Lett., 43,7465-7467.
Laurent P., Braekman J.-C. & Daloze D., 2005. Insect chemical defense. Top. Curr. Chem., 240, 167-229.
Lebrun B., Braekman J.-C, Daloze D. & Pasteels J.-M., 1997. 2-dehydrococcinelline, a new defensive alkaloid from the ladybird beetle Anatis ocellata (Coccinellidae). J. Nat. Prod., 60, 1148-1149.
Lebrun B. et al., 1998. Isopsylloborine A, a new dimeric azaphenalene alkaloid from ladybird beetles (Coleoptera: Coccinellidae). Tetrahedron Lett., 40, 8115-8116.
Lebrun B. etal., 2001. Hyperaspine, anew 3-oxaquinolizidine alkaloid from Hyperaspis campestris (Coleoptera: Coccinellidae). Tetrahedron Lett., 42,4621-4623.
leRü B. & Makaya Makosso JP., 2001. Prey habitat location by the Cassava Mealybug predator Exochomus flaviventris: olfactory responses to odor of plant, mealybug, plant-mealybug complex, and plant-mealybg-natural enemy complex. J. Insect Behav., 14(5), 557-572.
Lognay G. et al., 1996. Adalinine, a new piperidine alkaloid from the ladybird beetles Adalia bipunctata and Adalia decempunctata. J. Nat. Prod., 59, 510-511.
McCormick K.D. et al., 1994. Chilocorine: heptacyclic alkaloid from a coccinellid beetle. Tetrahedron, 50, 2365-2372.
Magro A. et al., 2007. Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? Chemoecology, 17, 37-45.
Majerus M.E.N., Sloggett J.J., Godeau J.-F & Hemptinne J.-L., 2007. Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul. Ecol., 49, 15-27.
Malcolm S.B., 1990. Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology, 1,12-21.
Malcolm S.B., 1992. Prey defence and predator foraging. In: Crawley M.J., ed. The population biology of predators, parasites and diseases. Oxford, UK: Blackwell Scientific Publications, 458-475.
Marples N.M., 1993. Is the alkaloid in 2-spot ladybirds (Adalia bipunctata) a defence against ant predation? Chemoecology, 4(1), 29-32.
Marples N.M., Brakefield P.M. & Cowie R.J., 1989. Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol. Entomol., 14, 79-84.
Martos A., Givovich A. & Niemeyer H.M., 1992. Effect of DIMBOA, an aphid resistance factor in wheat, on the aphid predator Eriopis connexa Germar (Coleoptera: Coccinellidae). J. Chem. Ecol., 18,469-479.
Merlin J., Lemaitre O. & Grégoire J.-C, 1996. Chemical cues produced by conspecific larvae deter oviposition by the coccidophagous ladybird beetle, Cryptolaemus montrouzieri. Entomol. Exp. Appl., 79, 147-151.
Michaud J.P, 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environ. Entomol., 31, 827-835.
Moore B.P, Brown W.V. & Rothschild M., 1990. Methylakylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology, 1,43-51.
Murray R.D.H., Martin A. & Stride G.O., 1972. Identification of the volatile phagostimulants in Solanum campylacanthum for Epilachna fulvosignata. J. Insect Physiol., 18, 2369-2373.
Nakashima Y. et al., 2004. The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J. Chem. Ecol., 30, 1103-1116.
Nakashima Y., Birkett M.A., Pye BJ. & Powell W., 2006. Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators. J. Chem. Ecol., 32(9), 1989-1998.
Nalepa C.A., Kidd K.A. & Ahlstrom K.R., 1996. Biology of Harmonia axyridis (Coleoptera: Coccinellidae) in winter aggregations. Ann. Entomol. Soc. Am., 89, 681-685.
Nalepa C.A., Kidd K.A. & Hopkins D.I., 2000. The multicoloured Asian lady beetle: orientation to aggregation sites. J. Entomol. Sci., 35, 150-157.
Ninkovic V., al Abassi S. & Pettersson J., 2001. The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol. Control, 21, 191-195.
Ninkovic V. & Pettersson J., 2003. Searching behaviour of the sevenspotted ladybird, Coccinella septempunctata: effects of plant-plant odour interaction. OIKOS, 100, 65-70.
Obata S., 1986. Mechanisms of prey finding in the aphidophagous ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Entomophaga, 31, 303-311.
Oliver T.H., Timms J.E.L., Taylor A. & Leather S.R., 2006. Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con-and heterospecific tracks. Bull. Entomol. Res., 96(1), 25-34.
Omkar, PervezA. & Gupta A.K., 2004. Role of surface chemicals in egg cannibalism and intraguild predation by neonates of two aphidophagous ladybirds, Propylea dissecta and Coccinella transversalis. J. Appl. Entomol., 128(9/10), 691-695.
Omkar & Pervez A., 2005. Mating behavior of an aphidophagous ladybird beetle, Propylea dissecta (Mulsant). Insect Sci., 12, 37-44.
Pasteels J.-M. et al., 1973. Distribution et activité des alcaloïdes défensifs des Coccinellidae. J. Insect Physiol., 19, 1771-1784.
Pennacchio F., 1989. The Italian species of the genus Aphidius Nees (Hymenoptera, Braconidae, Aphidiinae). Boll. Lab. Entomol. Agrar. "Fillippo Silvestri.", 46,75-106.
Radford P. et al., 1997. Pyrrolidinoöxazolidine alkaloids from two species of ladybird beetles. J. Nat. Prod., 60, 755-759.
Richards A.M., 1980. Rapid publication note. Sexual selection, guarding and sexual conflict in a species of coccinellidae (Coleoptera). Aust. J. Entomol., 19, 26.
Riddick E.W., Dively G. & Barbosa P., 1998. Effect of seed-mix deployment of Cry3A-trangenic and nontransgenic potato on the abundance of Lebia grandis (Coleoptera: Carabidae) and Coleomegilla maculata (Coleoptera: Coccinellidae). Ann. Entomol. Soc. Am., 91, 647-653.
Roach S.H. & Thomas W.M., 1991. Overwintering and spring emergence of three coccinellid species in the coastal plain of South Carolina. Environ. Entomol., 20, 540-544.
Rothschild M., vonEuw J. & Reichstein T., 1970. Cardiac glycosides in the oleander aphid Aphis nerii. J. Insect Physiol., 16, 1141-1145.
Rothschild M., vonEuw J. & Reichstein T., 1973. Cardiac glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J. Entomol. (A), 48, 89-90.
Ruzicka Z., 1997. Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). Eur. J. Entomol., 94,431-434.
Ruzicka Z., 2001. Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur. J. Entomol., 98(2), 183-188.
Ruzicka Z., 2002. Persistence of deterrent larval tracks in Coccinella septempunctata, Cycloneda limbifer and Semiadalia undecimnotata (Coleoptera: Coccinellidae). Eur. J. Entomol., 99(4), 471-475.
Ruzicka Z., 2003. Perception of oviposition-deterring larval tracks in aphidophagous coccinellids Cycloneda limbifer and Ceratomegilla undecimnotata (Coleoptera: Coccinellidae). Eur. J. Entomol., 100(3), 345-350.
Ruzicka Z., 2006. Oviposition-deterring effects of conspecific and heterospecific larval tracks on Cheilomenes sexmaculata (Coleoptera: Coccinellidae). Eur. J. Entomol., 103(4), 757-763.
Ruzicka Z. & Zemek R., 2008. Deterrent effects of larval tracks on conspecific larvae in Cycloneda limbifer. Biocontrol, 53(5), 763-771.
Schröder F.C. & Tolasch T., 1998. Psylloborine A, a new dimeric alkaloid from a ladybird beetle. Tetrahedron, 54,12243-12248.
Sengonca C. & Liu B., 1994. Responses of the different instar predator, Coccinella septempunctata L. (Coleoptera: Coccinellidae), to the kairomones produced by the prey and non-prey insects as well as the predator itself. J. Plant Dis. Protect., 101, 173-177.
Shi X. et al., 1995. Spirocyclic defensive alkaloid from a coccinellid beetle. Tetrahedron, 51, 8711-8718.
Smith B.D., 1966. Effects of parasites and predators on a natural population of the aphid Acyrthosiphon spartii (Koch) and broom (Sarothamnus scoparius L.). J. Appl. Ecol., 35, 255-267.
Takizawa T., Yasuda H. & Agarwala B.K., 2000. Effect of three species of predatory ladybirds on oviposition of aphid parasitoids. Entomol. Sci., 3(3), 465-469.
Timmermans M. etal., 1992. Exochomine, a dimeric ladybird alkaloid, isolated from Exochomus quadripustulatus (Coleoptera: Coccinellidae). Tetrahedron Lett., 33, 1281-1284.
Tursch B. et al., 1971. Coccinellin, the defensive alkaloid of the beetle Coccinella septempunctata. Chimia, 25, 307.
Tursch B., Daloze D. & Hootele C, 1972. The alkaloid of Propylaea quatuordecimpunctata L. (Coleoptera: Coccinellidae). Chimia, 26, 74.
Tursch B. et al., 1973. Chemical ecology of arthropods. VI. Adaline, a novel alkaloid from Adalia bipunctata L. (Coleoptera, Coccinellidae). Tetrahedron Lett., 14, 201-202.
Tursch B. et al., 1974. Chemical ecology of arthropods. IX. Structure and absolute configuration of hippodamine and convergine, two novel alkaloids from the American ladybug Hippodamia convergens (Coleoptera Coccinellidae). Tetrahedron Lett., 15,409-412.
Tursch B. et al., 1975. Chemical ecology of arthropods. X. The structure of myrrhine and the biosynthesis of coccinelline. Tetrahedron, 31, 1541-1543.
Van den Meiracker R.A.F., Hammond W.N.O. & van Alphen J.M., 1990. The role of kairomones in prey finding by Diomus sp. andExochomus sp., two coccinellid predators of the cassava mealybug, Phenacoccus manihoti. Entomol. Exp. Appl., 56, 209-217.
Verheggen F.J. et al., 2007. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpenes semiochemicals. J. Chem. Ecol., 33, 2148-2155.
Wang S.F., Braekman J.-C, Daloze D. & Pasteels J.-M., 1996a. Signatipennine: a new alkaloid from the New Guinean ladybird Epilachna signatipennis (Coccinellidae). Bull. Soc. Chim. Belges, 105,483-487.
Wang S.F. et al., 1996b. N-alpha-quinaldyl-L-arginine-HC1, a new alkaloid from Subcoccinella 24-punctata (Coleoptera: Coccinellidae). Experientia, 52, 628-630.
Ware R.L. et al., 2008. Chemical protection of Calvia quatuordecimguttata eggs against intraguild predation by the invasive ladybird Harmonia axyridis. In: Roy H.E. & Wajnberg E., eds. Biological control to invasion: the ladybird Harmonia axyridis as a model species. Dordrecht, The Netherlands: Springer, 189-200.
Wiedemann R., Woodring J., Volkl W. & Hoffmann K.H., 2004. Amino acid composition of honeydew from aphid species feeding on tansy, Tanacetum vulgare. Mitt. Dtsch. Ges. Allg. Angew. Entomol., 14,459-462.
Witte L., Ehmke A. & Hartmann Th., 1990. Interspecific flow of pyrrolizidine alkaloids. From plants via aphids to ladybirds. Naturwissenschaften, 77, 540-543.
Yasuda H., Takagi T. & Kogi K., 2000. Effects of conspecific and heterospecific larval tracks on the oviposition behaviour of the predatory ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol., 97, 551-553.
Zhu J. et al., 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicalsreleased from their prey and host plant: electroantennogram and behavioral responses. J. Chem. Ecol., 25(5), 1163-1177.
Zhu J. & Park K.-C, 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol., 31(8), 1733-1746.