Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 Å) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core.
conformational substates; cryotechniques (100 K); crystal structure at atomic resolution; EF-hand
parvalbumin; hydrophobic core and internal cavities; microgravity crystallization; slow dynamics and function; validation tools
Abstract :
[en] Several crystal structures of parvalbumin (Parv), a typical EF-hand protein, have been reported so far for different
species with the best resolution achieving 1.5 Å. Using a crystal grown under microgravity conditions, cryotechniques (100 K), and synchrotron radiation, it has now been possible to determine the crystal structure of the fully Ca2+ loaded form of pike (component pI 4.10) Parv.Ca2 at atomic resolution (0.91 Å). The availability of such a high quality structure offers the opportunity to contribute to the definition of the validation tools useful for the refinement of protein crystal structures determined to lower resolution. Besides a better definition of most of the elements in the protein threedimensional structure than in previous studies, the high accuracy thus achieved allows the detection of well-defined alternate conformations, which are observed for 16 residues out of 107 in total. Among them, six occupy an internal position within the hydrophobic core and converge toward two small buried cavities with a total volume of about 60 Å3. There is no indication of any water molecule present in these cavities. It is probable that at temperatures of physiological conditions there is a dynamic interconversion between these alternate conformations in an energy-barrier dependent manner. Such motions for which the amplitudes are provided by the present study will be associated with a timedependent remodeling of the void internal space as part of a slow dynamics regime (millisecond timescales) of the parvalbumin molecule. The relevance of such internal dynamics to function is discussed.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Declercq, Jean-Paul; Université Catholique de Louvain - UCL > Département de Chimie > Unité CPMC
Evrard, Christine ; Université Catholique de Louvain - UCL > Département de Chimie > Unité CPMC
Lamzin, Victor; EMBL c/o DESY - Hamburg
Parello, Joseph; Université de Montpellier 1
Language :
English
Title :
Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 Å) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core.
Publication date :
1999
Journal title :
Protein Science: A Publication of the Protein Society
ISSN :
0961-8368
eISSN :
1469-896X
Publisher :
Cold Spring Harbor Laboratory Press, Woodbury, United States - New York
Allen FH, Kennard O. 1993. 3D search and research using the Cambridge Structural Database. Chem Design Automation News 8:31-37.
Allouche D, Parello J. Sanéjouand YH. 1999. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. J Mol Biol 285:857-873.
Andersson M, Malmendal A, Linse S, Ivarsson I, Forsén S, Svensson LA. 1997. Structural basis for the negative allostery between Ca2+ - and Mg2+ -binding in the intracellular Ca2+ -receptor calbindin D9k. Protein Sci 6:1139-1147.
Berchtold MW, Celio MR, Heizmann CW. 1985. Parvalbumin in human brain. J Neurochem 45:235-240.
Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. 1977. The Protein Data Bank: A computer based archival file for macromolecular structures. J Mol Biol 112:535-542.
Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thogersen HC, Nyborg J, Kjeldgaard M. 1998. EF-hands at atomic resolution: The structure of human psoriasin (S100A7) solved by MAD phasing. Structure 6:477-489.
Brünger AT. 1992a. X-PLOR version 3.1, A system far X-ray crystallography and NMR. New Haven, CT: Yale University Press.
Brünger AT. 1992b. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472-475.
Cavé A, Dobson CM, Parello J, Williams RJP. 1976. Conformation mobility within the structure of muscular parvalbumins. An NMR study of the aromatic resonances of phenylalanine residues. FEBS Lett 65:190-194.
Cavé A. Parello J. 1981. Dynamic aspects of the structure of globular proteins by high resolution NMR spectroscopy. The fluid-like structure of the internal hydrophobic core of muscular parvalbumins. In: Balian R et al., eds. Les Houches, Session XXXIII 1979. Membranes et Communication intercellulaire. Amsterdam: North Holland Publishing Company, pp 197-227.
Celio MR. 1986. Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995-996.
Declercq JP, Evrard C, Carter DC, Wright BS, Etienne G, Parello J. 1999. A crystal of a typical EF-hand protein grown under microgravity diffracts X-rays beyond 0.9 Å resolution. J Cryst Growth 196:595-601.
Declercq JP, Tinant B, Parello J. 1996. X-ray structure of a new crystal form of pike 4.10 β parvalbumin. Acta Crystallogr Sect D 52:165-169.
Declercq JP, Tinant B, Parello J, Etienne G, Huber R. 1988. Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). J Mol Biol 202:349-353.
Declercq JP, Tinant B, Parello J, Rambaud J. 1991. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in tour different ionic environments. J Mol Biol 220:1017-1039.
Dodson FJ, Davies GJ, Lamzin VS, Murshudov GN, Wilson S. 1998. Validation tools: Can they indicate the information content of macromolecular crystal structures? Structure 6:685-690.
Engh R, Huber R. 1991. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr Sect A 47:392-400.
Frauenfelder H. 1995. Complexity in proteins. Nature Struct Biol 338:623-624.
Gelin BR, Karplus M. 1975. Sidechain torsional potentials and motion of amino acids in proteins: Bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 72:2002-2006.
Hooft RWW, Vriend G, Sander C, Abola EE. 1996. Errors in protein structures. Nature 381:272.
Hou TT, Johnson JD, Rall JA. 1992. Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscles. J Physiol 449:399-410.
Jones TA, Zou JY, Cowan SW, Kjeldgaard M. 1991. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr Sect A 47:110-119.
Kleywegt GJ, Jones TA. 1994. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr Sect D 50:178-185.
Kleywegt GJ, Jones TA. 1996. Efficient rebuilding of protein structures. Acta Crystallogr Sect D 52:829-832.
Kretsinger RH, Nockolds CE. 1973. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313-3326.
Kumar VD, Lee L, Edwards BFP. 1990. Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5 Å resolution. Biochemistry 29:1404-1412.
Lamzin VS, Wilson KS. 1993. Automated refinement of protein models. Acta Crystallogr Sect D 49:129-147.
Lamzin VS, Wilson KS. 1997. Automated refinement for protein crystallography. Methods Enzymol 277:269-305.
Nienhaus GU, Müller JD, McMahon BH, Frauenfelder H. 1997. Exploring the conformational landscape of proteins. Physica D 107:297-311.
Opella SJ, Nelson DJ, Jardetzky O. 1974. Carbon magnetic resonance study of the conformational changes in carp muscle calcium binding parvalbumin. J Am Chem Soc 96:7157-7159.
Orville-Thomas WJ. 1974. In: Orville-Thomas WJ, ed. Internal rotation in molecules. London, New York: John Wiley & Sons. Chap. 1. pp 1-18.
Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307-326.
Parello J, Pechère JF. 1971. Conformational studies on muscular parvalbumins. I. Optical rotatory dispersion and circular dichroism analysis. Biochimie 55:1079-1083.
Read RJ. 1986. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr Sect A 42:140-149.
Roquet F, Declercq JP, Tinant B, Rambaud J, Parello J. 1992. Crystal structure of the unique component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an α-parvalbumin. J Mol Biol 223:705-720.
Rüegg JC. 1989. Calcium in muscle activation. Berlin: Springer Verlag.
Schäfer BW, Heizmann CW. 1996. The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends in Biochemical Sciences 27:134-140.
Strynadka NCJ, James MNG. 1989. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 38:951-998.
Swain AL, Kretsinger RH, Amma EL. 1989. Restrained least squares refinement of native (calcium) and calcium-substituted carp parvalbumin using X-ray crystallographic data at 1.6 Å resolution. J Biol Chem 264:16620-16628.
White HD. 1988. Kinetic mechanism of calcium binding to whiting parvalbumin. Biochemistry 27:3357-3365.
Wilson KS, Butterworth S, Dauter Z, Lamzin VS, Walsh M, Wodak S, Pontius J, Richelle J, Vaguine A, Sander C. et al. (EU 3-D Validation Network). 1998. Who checks the checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol 276:417-436.
Zanotti JM, Bellissent-Funel MC, Parello J. 1999. Hydration-coupled dynamics in proteins studied by neutron scattering and NMR. The case of the typical EF-hand calcium-binding parvalbumin. Biophys J 76:2390-2411.