[en] A quantitative study using laser confocal microscopy combined with differential interference microscopy on the
kinetics and thermodynamics of the crystallization of glucose isomerase is presented. Fundamental crystallization parameters are determined from the kinetics of step advancement and rates of two-dimensional (2D) nucleation. The ruling mass transfer pathway and accompanying activation barriers are discussed. In brief, the solubility exhibits normal temperature dependence and the crystallization enthalpy is the thermodynamic driving force. The diminishing entropic cost for higher PEG concentrations is attributed to water structuring and a decrease in water activity. The prominent step generation mechanism is homogeneous 2D nucleation for high supersaturations. At low driving forces 2D nucleation occurs on anomalously hyperactive sites and the step edge free energies for homogeneous and heterogeneous nucleation are determined. The number of nucleation centers for both mechanisms are estimated and from the density of nucleation centers we obtain for the activation barrier of adsorption ∼3.8 kJ mol-1. No step-step interaction is observed for interstep distances >70 nm. Theoretical fits of step velocity data suggest surface diffusion makes a non-negligible contribution to surface kinetics. From the temperature dependence of the step kinetic coefficient the activation barrier for crystallization was determined to be <22.4 kJ mol-1.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Markov, I. V. In Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy; Markov, I. V., Eds.; World Scientific Publishing: Singapore, 2003.
Buckley, H. E. In Crystal Growth; John Wiley and Sons: New York, 1951.
Burton, W. K.; Cabrera, N.; Frank, F. C. Philos. Trans. R. Soc. Lond. 1951, 243, 299-358.
Adam, G.; Delbruck, M. In Structural Chemistry and Molecular Biology; Rich, A.,Davidson, N., Eds.; Freeman: San Francisco, 1968; p 198.
Berg, H. C.; Purcell, E. M. Biophys. J. 1977, 20, 193-219.
Garza-López, R. A.; Bouchard, P.; Nicolis, G.; Sleutel, M.; Brzezinski, J.; Kozak, J. J. Chem. Phys. 2008, 114701-114714.
Vekilov, P. G.; Kuznetsov, Y.; Chernov, A. A. J. Cryst. Growth 1992, 121, 643-655.
Vekilov, P. G.; Monaco, L. A.; Rosenberger, F. J. Cryst. Growth 1995, 156, 267-278.
Land, T. A.; De Yoreo, J. J.; Lee, J. D. Surf. Sci. 1997, 384, 136-155.
Reviakine, I. J. Am. Chem. Soc. 2003, 125, 11684-11693.
Chen, K.; Vekilov, P. G. Phys. Rev. E 2002, 66, 21606-121606-5.
Sleutel, M.; Vanhee, C.; Van de Weerdt, C.; Decanniere, K.; Maes, D.; Wyns, L.; Willaert, R. Cryst. Growth Des. 2008, 8, 1173-1180.
Sazaki, G.; Okada, M.; Matsui, T.; Watanabe, T.; Higuchi, H.; Tsukamoto, K.; Nakajima, K. Cryst. Growth Des. 2008, 8, 2024-2031.
Chernov, A. A.; Rashkovich, L. N.; Yaminski, I. V.; Gvozdev, N. V. J. Phys.: Condens. Matter. 1999, 11, 9969-9984.
Carrell, H. L.; Glusker, J. P.; Burger, V.; Manfre, F.; Tritsch, D.; Biellmann, J.-F. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 4440-4444.
Hill, T. L. In An Introduction to Statistical Thermodynamics; Bonner, F. T., Pimentel, G. C., Eds.; Dover: New York, 1986.
Ross, P. D.; Minton, A. P. J. Mol. Biol. 1977, 112, 437-452.
Atkins, P. In Physical Chemistry, 6th ed.; Freeman: New York, 1998.
Tidor, B.; Karplus, M. J. Mol. Biol. 1994, 238, 405-414.
Yau, S. T.; Petsev, D. N.; Thomas, B. R.; Vekilov, P. G. J. Mol. Biol. 2000, 303, 667-678.
Vekilov, P. G.; Feeling-Taylor, A. R.; Yau, S. T.; Petsev, D. N. Acta Crystallogr. D 2002, D58, 1611-1616.
Koepke, J.; Scharff, E. I.; Lücke, C.; Rüterjans, H.; Fritzsch, G. Acta Crystallogr. D 2002, 58, 1757-1759.
Zhang, M.; Wei, Z.; Chang, S.; Teng, M.; Gong, W. J. Mol. Biol. 2006, 358, 97-105.
Hasek, J. Z Kristallogr. Suppl. 2006, 23, 613-618.
Barbosa, J. A. R. G.; Silva, L. P.; Teles, R. C. L.; Esteves, G. F.; Azevedo, R. B.; Ventura, M. M.; de Freitas, S. M. Biophys. J. 2007, 92, 1638-1650.
Vekilov, P. G. Cryst. Growth Des. 2007, 7, 2796-2810.
Vekilov, P. G. Cryst. Growth Des. 2007, 7, 2239-2246.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.