sol-gel transition; resorcinol-formaldehyde gel; rheology; viscoelasticity; gelation time
Abstract :
[en] The sol-gel transition of organic gels prepared by polycondensation of resorcinol (R) with formaldehyde (F) in presence of sodium carbonate (C) was monitored by small amplitude oscillatory measurements, at a single frequency. The gelation time (t(g)) was determined from the evolution of the storage (G) and loss (G") moduli versus time. The influence of two synthesis variables, the resorcinol/sodium carbonate ratio (R/C) and the synthesis temperature (7), was investigated. The gelation time was found to decrease with increasing synthesis temperature and decreasing R/C ratio. The apparent activation energy of the reactional system leading to the gelation, calculated from the gelation times obtained between 50 and 90 degrees C, was found to be close to 80 kJ mol(-1) and independent of the R/C ratio. (c) 2006 Elsevier B.V. All rights reserved.
Disciplines :
Chemistry Chemical engineering
Author, co-author :
Job, Nathalie ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Génie catalytique
Panariello, Fabian
Crine, Michel ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires
Pirard, Jean-Paul ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Génie catalytique
Léonard, Angélique ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires - Département de chimie appliquée
Language :
English
Title :
Rheological determination of the sol-gel transition during the aqueous synthesis of resorcinol-formaldehyde resins
Alternative titles :
[fr] Détermination de la transition sol-gel lors de la synthèse de résines résorcinol-formaldéhyde en milieu aqueux
Publication date :
01 February 2007
Journal title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Pekala R.W., and Kong F.M. A synthetic route to organic aerogels: mechanism, structures and properties. Rev. Phys. Appl. 24 (1989) 33-40
Pekala R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24 (1989) 3221-3227
Job N., Thery A., Pirard R., Marien J., Kocon L., Rouzaud J.N., Beguin F., and Pirard J.P. Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43 (2005) 2481-2494
Lin C., and Ritter J.A. Effect of synthesis pH on the structure of carbon xerogels. Carbon 35 (1997) 1271-1278
Job N., Pirard R., Marien J., and Pirard J.P. Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42 (2004) 619-628
Zhang R., Li W., Li K., Lu C., Zhan L., and Ling L. Effect of concentration of reactants on porosity of hydrogels, organic and carbon aerogels. Microporous Mesoporous Mater. 72 (2004) 167-173
Bock V., Emmerling A., and Fricke J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure. J. Non-Cryst. Solids 225 (2005) 69-73
Léonard A., Job N., Blacher S., Pirard J.P., Crine M., and Jomaa W. Suitability of convective air drying for the production of porous resorcinol-formaldehyde and carbon xerogels. Carbon 43 (2005) 1808-1811
Sircar S., Golden T.C., and Rao M.B. Activated carbon for gas separation and storage. Carbon 34 (1996) 1-12
Yamamoto T., Endo A., Ohmori T., and Nakaiwa M. Porous properties of carbon gel microspheres as adsorbents for gas separation. Carbon 42 (2004) 1671-1676
Job N., Heinrichs B., Ferauche F., Noville F., Marien J., and Pirard J.P. Hydrodechlorination of 1,2-dichloroethane on Pd-Ag catalysts supported on tailored texture carbon xerogels. Catal. Today 102-103 (2005) 234-241
Job N., Heinrichs B., Lambert S., Colomer J.-F., Vertruyen B., Marien J., and Pirard J.P. Carbon xerogels as catalyst supports: study of mass transfer. AIChE J. 52 (2006) 2663-2676
Job N., Pereira M.F.R., Lambert S., Cabiac A., Delahay G., Colomer J.F., Marien J., Figueiredo J.L., and Pirard J.P. Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. J. Catal. 240 (2006) 160-171
Li W., Reichenauer G., and Fricke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40 (2002) 2955-2959
Pekala R.W., Farmer J.C., Alviso C.T., Tran T.D., Mayer S.T., Miller J.M., and Dunn B. Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225 (1998) 74-80
Frackowiak E., and Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39 (2001) 937-950
Gilbert M.T., Knox J.H., and Kaur B. Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography. Chromatographia 16 (1982) 138-146
Yamamoto T., Sugimoto T., Suzuki T., Mukai S.R., and Tamon H. Preparation and characterization of carbon cryogel microspheres. Carbon 40 (2002) 1345-1351
Al Muhtaseb S.A., and Ritter J.A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15 (2003) 101-114
Brinker C.J., and Scherer G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (1990), Academic Press, London
Macosko C.W. Rheology. Principles, measurements, and applications (1994), Wiley/VCH, Poughkeepsie, NY
Tung C.Y., and Dynes P.J. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 27 (1982) 569-574
Doublier J.L., and Choplin L. A rheological description of amylose gelation. Carbohydr. Res. 193 (1989) 215-226
Kasapis S., Morris E.R., Norton I.T., and Clark A.H. Phase equilibria and gelation in gelatin/maltodextrin systems-part I: gelation of individual components. Carbohydr. Polym. 21 (1993) 243-248
Ponton A., Griesmar P., Barboux-Doeuff S., and Sanchez C. Rheological investigation of the sol-gel transition: effect of hydrolysis variation in silicon oxide and titanium oxide based matrices. J. Mater. Chem. 11 (2001) 3125-3129
Alié C., Pirard R., and Pirard J.P. Preparation of low-density xerogels from mixtures of TEOS with substituted alkoxysilanes. II. Viscosity study of the sol-gel transition. J. Non-Cryst. Solids 320 (2003) 31-39
Van Cantfort O., Brasseur A., Michaux B., Pirard R., Pirard J.P., and Lecloux A.J. Rheological characterization of the BaTiO3 sol-gel transition. Faraday Discuss. 101 (1995) 265-274
Winter H.H., and Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 30 (1986) 367-382
Ponton A., Barboux-Doeuff S., and Sanchez C. Physico-chemical control of sol-gel transition of titanium alkoxide-based materials studied by rheology. J. Non-Cryst. Solids 351 (2005) 45-53
Hwang S.W., and Hyun S.H. Capacitance control of carbon aerogel electrodes. J. Non-Cryst. Solids 347 (2004) 238-245
Job N., Panariello F., Marien J., Crine M., Pirard J.P., and Léonard A. Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels. J. Non-Cryst. Solids 352 (2006) 24-34
Lin C., and Ritter J.A. Effect of synthesis pH on the structure of carbon xerogels. Carbon 35 (1997) 1271-1278
Raghavan S.R., Chen L.A., Mc Dowell C., and Khan S.A. Polymer 37 (2005) 5869
Ksapabutr B., Gulari E., and Wongkasemjit S. Sol-gel transition study and pyrolysis of alumina-based gels prepared from alumatrane precursor. Colloid Surf. A 233 (2005) 145-153
Wiener M., Reichenauer G., Scherb T., and Fricke J. Accelerating the synthesis of carbon aerogel precursors. J. Non-Cryst. Solids 350 (2004) 126-130
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.