Combining an original method for preserving RNA expression in situ with an effetive RNA method makes it possible to study gene expression in any banana fruit tissue.
[en] Introduction. RNA isolation is a prerequisite to studying gene expression in
banana and to understanding changes occurring in response to the environment. Standard
extraction methods do not efficiently extract RNA from plants such as banana, with high levels
of phenolics, carbohydrates, or other compounds that bind to and/or coprecipitate with RNA.
Materials and methods. Five to seven RNA extraction methods were compared. Four crowntissue
storage methods were also compared. cDNA-AFLP was used to ensure that the obtained RNA
was of sufficient quality for molecular applications and that RNA expression was unaltered by in
situ storage. Results and discussion. The modified hot-borate method proved to be the best
RNA extraction method, allowing high yields of good quality, undegraded RNA from the crown,
fruit peel and pulp at all stages of ripening. The RNA obtained by this method was of sufficient
quality for molecular applications such as cDNA-AFLP that give highly reproducible results.
Freeze-drying of fresh tissues and tissue conservation in hot-borate buffer, two original storage
methods, appear appropriate for preserving RNA in situ without ultra-low temperature. The RNA
obtained was of high quality, undegraded, and useful for all downstream applications. The
genome expression profile obtained by cDNA-AFLP analysis was unaltered by these methods
for storing collected tissues. Conclusion. By applying all the suggested procedures in this work,
it is possible to store and study gene expression in any banana fruit tissue, whatever the maturity
stage, without affecting the RNA expression level. [fr] Introduction. L'extraction de l’ARN est un préalable pour étudier l'expression des
gènes dans la banane et pour comprendre les changements intervenant en réponse à l'environnement.
Les méthodes standard d'extraction de l’ARN ne sont pas efficaces avec des plantes
comme le bananier, qui présentent des niveaux élevés de composés phénoliques, d’hydrates
de carbone, ou autres composés qui se lient à et/ou coprécipitent l'ARN. Matériel et méthodes.
Cinq à sept méthodes d'extraction de l’ARN ont été comparées. Quatre méthodes de stockage
de tissus de couronne ont été également comparées. La technique de cDNA-AFLP a été utilisée
pour s'assurer que l'ARN extrait était de qualité suffisante pour des applications moléculaires
et que l'expression de l'ARN était inchangée après un stockage in situ. Résultats et discussion.
La méthode du borate chaud modifiée s’est avérée être la meilleure méthode d'extraction de
l’ARN, permettant des rendements élevés de bonne qualité, et donnant de l'ARN non dégradé
à partir des tissus de la couronne, de la peau des fruits et de la pulpe à toutes les étapes de la
maturation. L'ARN obtenu par cette méthode a été de qualité suffisante pour les applications
moléculaires telles que le cDNA-AFLP qui donne des résultats fortement reproductibles. La lyophilisation
des tissus frais et la conservation de tissu dans la solution tampon de borate chaud,
deux méthodes originales de stockage, semblent appropriées à la conservation de l'ARN in situ
en absence d’ultra basse température. L'ARN obtenu a été de qualité, non dégradé, et utilisable
pour toutes les applications. Le profil d'expression du génome obtenu par la technique de cDNAAFLP
est resté inchangé par ces méthodes de stockage des tissus collectés. Conclusion. En
appliquant toutes les procédures suggérées dans ce travail, il est possible de stocker et d’étudier
l'expression de gènes dans n'importe quel tissu de banane, quel que soit le stade de maturité,
sans affecter le niveau d'expression de l'ARN.
Combining an original method for preserving RNA expression in situ with an effetive RNA method makes it possible to study gene expression in any banana fruit tissue.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Xu B.Y., Su W., Liu J.H., Wang J.B., Jin Z.Q., Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray, Planta 226 (2007) 529-539.
Choudhury S.R., Roy S., Sengupta D.N., Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit, J. Plant Physiol. 165 (2008) 1865-1878.
Martin L.A., Smith T.J., Obermoeller D., Bruner B., Kracklauer M., Dharmaraj S., RNA purification, in: Gerstein A.S. (Ed.), Molecular biology problem solver, Wiley-Liss, N Y, USA, 2001.
Hu C., Honda C., Kita M., Zhang Z., Tsuda T., Moriguchi T., A simple protocol for RNA isolation from fruit trees containing high levels of polysaccharides and polyphenol compounds, Plant Mol. Biol. Rep. 20 (2002) 69a-69g.
Ding L., Sun Q., Wang Z., Sun Y. , Xu Z., Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate, Anal. Biochem. 374 (2008) 426- 428.
Claros M., Canovas F., RNA isolation from plant tissues: a practical experience for biological undergraduates, Biochem. Educ. 27 (1999) 110-113.
Gehrig H., Winter K., Cushman J., Borland A., Taybi T., An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides, Plant Mol. Biol. Rep. 18 (2000) 369-376.
Liu W., Wang B., Duan C., Li B., A method for isolating functional RNA from callus of Dendrobium candidum contented rich polysaccharides, Colloid Surf. B-Biointerfaces 42 (2005) 259-262.
Venugopalan C., Kapoor H., Single step isolation of plant RNA, Phytochem. 46 (1997) 1303-1305.
Wu Y., Llewellyn D., Dennis E., A quick and easy method for isolating good-quality RNA from cotton (Gossypium hirsutum L.) tissues, Plant Mol. Biol. Rep. 20 (2002) 213-218.
Chang S., Puryear J., Cairney J., A simple and efficient method for isolating RNA from pine trees, Plant Mol. Biol. Rep. 11 (1993) 113-116.
Gao J., Liu J., Li B., Li Z., Isolation and purification of functional total RNA from bluegrained wheat endosperm tissues containing high levels of starches and flavonoids, Plant Mol. Biol. Rep. 19 (2001) 185a-185i.
Salzman R.A., Fujita T., Zhu-Salzman K., Hasegawa P.M., Bressan R.A., An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates, Plant Mol. Biol. Rep. 17 (1999) 11-17.
Zeng Y., Yang T., RNA isolation from highly viscous samples rich in polyphenols and polysaccharides, Plant Mol. Biol. Rep. 20 (2002) 417a-417e.
Maniatis T., Fritsch E., Sambrook J., (Eds.). Molecular Cloning: A laboratory Manual. Cold Spring Harbor Laboratory Press, N Y, USA,1982.
Chen T., Gagliardo R., Walker B., Zhou M., Shaw C., Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: Parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion, Pept. 26 (2005) 2624-2628.
Chen T., Xue Y., Zhou M., Shaw C., Molecular cloning of mRNA from toad granular gland secretion and lyophilized skin: identification of Bo8 a novel prokineticin from Bombina orientalis, Pept. 26 (2005) 377-383.
Gadbois D., Salo W., Ann D., Downing S., Carlson D., The preparation of poly(A)+mRNA from the hagfish slime gland, Prep. Biochem. Biotechnol. 18 (1988) 67-76.
Huang Z., Ortmeyer H., Hansen B., Shuldiner R., Preparation of RNA from lyophilized tissue: a stable and reliable method for long term storage, Biotech. 17 (1994) 4.
Matsuo S., Sugiyama T., Okuyama T., Yoshikawa K., Honda K., Takahashi R., Maeda S., Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses, Pathol. Int. 49 (1999) 383-390.
Tsuka H., Mori H., Okada K., Matsukawa S., Utilization of the freeze-drying method in the preparation of biologically active, intact RNA from hard frozen tissues of human prostate, Anal. Biochem. (1997) 458-461.
Vaughan H., Chalker V., Mee Z., Rossouw A., James V., Stability of lyophilised specimens for the molecular detection of viral DNA/ RNA, J. Clin. Virol. 35 (2006) 135-140.
Sessitsch A., Gyamfi S., Stralis-Pavese N., Weilharter A., Pfeifer U., RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols, J. Microbiol. Methods 51 (2002) 171-179.
Drouet A., Hartmann C., Polyribosomes from pear fruit, Plant Physiol. 69 (1982) 885-887.
Jaiprakash M., Pillai B., Venkatesh P. , Subramanian N., Sinkar V., Sadhale P. , RNA isolation from high-phenolic freeze-dried tea (Camelia sinensis) leaves, Plant Mol. Biol. Rep. 21 (2003) 465a-465g.
Saha S., Callahan F., Dollar D., Creech J., Effect of lyophilisation of cotton tissue on quality of extractable DNA, RNA, and protein, J. Cotton Sci. 1 (1997) 10-14.
Vos P. , Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res. 23 (1995) 4407-4414.
Bachem C., Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development, Plant J. 9 (1996) 745-753.
Chomczynski P., Sacchi N., Single step method of RNA isolation by acid guanidin-ium thiocyanate-phenol-chloroform extraction, Anal. Biochem. 162 (1987) 156-159.
Liu J., Goh C., Loh C., Liu P., Pua E., A method for isolation of total RNA from fruit tissues of banana, Plant Mol. Biol. Rep. 16 (1998) 1-6.
Mbéguié-A-Mbéguié D., Fils-Lycaon B., Chillet M., Hubert O., Galas C., Gomez R.-M., Extraction and purification of total RNA from banana tissues (small scale), Fruits 63 (4) (2008) 255-261.
Wan C., Wilkins T., A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.), Anal. Biochem. 233 (1994) 7-12.
Asif M.H., Dhawan P., Nath P., A simple procedure for isolation of high quality RNA from ripening banana fruit, Plant Mol. Biol. Rep. 18 (2000) 109-115.
Huberman J.A., Importance of measuring nucleic acid absorbance at 240 nm as well as at 260 and 280 nm, Biotech. 18 (1995) 636.
Troutman T., Prasauckas K., Kennedy M., Stevens J., Davies M., Dadd A., How to properly use and maintain laboratory equipment, in: Gerstein A.S. (Ed.), Molecular biology problem solver, Wiley-Liss, N Y, USA, 2001.
Mbeguie-A-Mbeguie D., Hubert O., Sabau X., Chillet M., Fils-Lycaon B., Baurens F.C., Use of suppression subtractive hybridization approach to identify genes differentially expressed during early banana fruit development undergoing changes in ethylene responsiveness, Plant Sci. 172 (2007) 1025-1036.
Kuhn E., From library screening to microar-ray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants, Ann. Bot. 87 (2001) 139-155.
Matz M., Lukyanov S.A., Different strategies of differential display: areas of application, Nucleic Acids Res. 26 (1998) 5537-5543.
Campalans A., Pagès M., Messeguer R., Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond, Tree Physiol. 21 (2001) 633-643.
Brugmans B., Fernadez del Carmen A., Bachem C., van Hos H., van Eck H.J., Visser R., A novel method for the construction of genome wide transcriptome maps, Plant J. 31 (2002) 1-15.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.