[en] Advanced drug delivery systems rely on the availability of biocompatible materials. Moreover, biodegradability is highly desirable in the design of those systems. Consequently, aliphatic polyesters appear as a class of promising materials since they combine both properties. Nevertheless, their use in practical biomedical systems relies on clinical approval which not only depends on the material itself but also on its reproducible synthesis with the absence of residual toxics. The first sections of this review aim at reporting on the evolution of the initiators/catalytic systems and of the synthesis conditions (particularly the use of supercritical CO2 as polymerization medium) in order to produce aliphatic polyesters with controlled macromolecular parameters by still "greener" ways. In addition, the further development of delivery systems also depends on the synthesis of materials exhibiting novel properties, such as amphiphilicity or pH-sensitivity that are emerging from the active research in macromolecular engineering. Functionalizing aliphatic polyesters is quite tedious due to their sensitivity towards hydrolytic degradation. The last section of this review is discussing several strategies to obtain functional (co)polyesters of various architectures providing them with novel properties.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Lecomte, Philippe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization
Publication date :
10 June 2008
Journal title :
Advanced Drug Delivery Reviews
ISSN :
0169-409X
eISSN :
1872-8294
Publisher :
Elsevier Science, Amsterdam, Netherlands
Special issue title :
Design and development strategies of polymer materials for drug and gene delivery applications
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Enomoto K., Ajioka M., Yamaguchi A., Polyhydroxycarboxylic acid and preparation process thereof, Patent US 5310865 (1994).
Lou X., Detrembleur C., and Jérôme R. Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol. Rapid Comm. 24 (2003) 161-172
Williams C.K. Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev. 36 (2007) 1573-1580
Penczek S., Cypryk M., Duda A., Kubisa P., and Slomkowski S. Living ring-opening polymerisations of heterocyclic monomers. Prog. Polym. Sci. 32 (2007) 247-282
Lecomte P., and Jérôme R. New developments in the synthesis of aliphatic polyesters by ring-opening polymerization. In: Smith R. (Ed). Biodegradable Polymers for Polymer Industrial Applications (2005), Woodhead Publishing Ltd 77-106
Chaubal M. Polylactides/glycolides - excipients for injectable drug. Drug Deliv. Technol. 2 n°5 (2002)
Vink E.T.H., Rabago K.R., Glassner D.A., and Gruber P.R. Application of life cycle assessment to Natureworks™ polylactide PLA production. Polym. Degrad. Stab. 147 (2003) 403-419
Baran J., Duda A., Kowalski A., Szymanski R., and Penczek S. Quantitative comparison of selectivities in the polymerization of cyclic esters. Macromol. Symp. 123 (1997) 93-101
Mecerreyes D., Jérôme R., and Dubois P. Novel macromolecular architectures based on aliphatic polyesters: relevance of the coordination-insertion ring-opening polymerization. Adv. Polym. Sci. 147 (1999) 1-59
Stjerndahl A., Wistrand A.F., and Albertsson A.C. Industrial utilization of tin-Initiated resorbable polymers: synthesis on a large scale with a low amount of initiator. Biomacromolecules 8 (2007) 937-940
Majerska K., Duda A., and Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 4. Influence of proton trapping agents on the kinetics of ε-caprolactone and l,l-dilactide polymerization. Macromol. Rapid Commun. 21 (2000) 1327-1332
Penczek S., Duda A., Kowalski, Libiszowski J., Majerska K., and Biela T. On the mechanism of polymerization of cyclic esters induced by tin (II) octoate. Macromol. Symp. 157 (2000) 61-70
Qing C., Jianzhong B., and Shenguo W. Relationship among drug delivery behaviour, degradation behaviour and morphology of copolylactones derived from glycolide, l-lactide and ε-caprolactone. Polym. Adv. Technol. 13 2 (2002) 105-111
Agarwal S., Mast C., Dehnicke K., and Greiner A. Rare Earth metal initiated ring-opening polymerization of lactones. Macromol. Rapid Commun. 21 (2000) 195-212
Le Borgne A., Pluta C., and Spassky N. Highly reactive yttrium alkoxide as new initiator for the polymerization of β-butyrolactone. Macromol. Rapid Commun. 15 12 (1994) 955-960
Ravi P., Gröb T., Dehnicke K., and Greiner A. Novel [Sm2I(NPPh3)5(DME)] initiator for the living ring-opening polymerization of ε-caprolactone and δ-valerolactone. Macromolecules 34 (2001) 8649-8653
Spassky N., Simic V., Hubert-Pfalzgraf L., and Montaudo M. Synthesis of aliphatic polyesters by controlled ring-opening polymerization of cyclic esters. Characterization, properties, transesterification reactions. Macromol. Symp. 144 (1999) 257-267
Martin E., Dubois P., and Jérôme R. Controlled ring-opening polymerization of ε-caprolactone promoted by "in situ" formed yttrium alkoxides. Macromolecules 33 5 (2000) 1530-1535
Kricheldorf H.R., Kreiser-Sanders I., and Damrau D.O. Resorbable intiators for polymerizations of lactones. Macromol. Symp. 159 (2000) 247-257
Kricheldorf H.R., Kreiser-Sanders I., and Damrau D.O. Resorbable intiators for polymerizations of lactones. Macromol. Symp. 144 (1999) 269-276
Abraham G., Gallardo A., Lozano A., and San Roman J. ε-caprolactone/ZnCl2 complex formation: characterization and ring-opening polymerization mechanism. J. Polym. Sci., A, Polym. Chem. 38 8 (2000) 1355-1365
Barakat I., Dubois P., Jérôme R., and Teyssié P. Living polymerization and selective end functionalization of ε-caprolactone using zinc alkoxides as initiators. Macromolecules 24 (1991) 6542-6545
Kowalski A., Libiszowski J., Majerska K., Duda A., and Penczek S. Polymer 48 (2007) 3952-3960
O'Keefe B.J., Breyfogle L.E., Hillmyer M.A., and Tolman W.B. Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: single vs multiple site catalysis. J. Am. Chem. Soc. 124 (2002) 4384-4393
Zhong Z., Ankone M.J.K., Dijkstra P.J., Birg Ch., Westerhausen M., and Feijen J. Calcium methoxide initiated ring-opening polymerization of ε-caprolactone and l-lactide. Polym. Bull. 46 (2001) 51-57
Zhong Z., Dijkstra P.J., Birg Ch., Westerhausen M., and Feijen J. A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34 (2001) 3863-3868
Bero M., Dobrzynski P., and Kasperczyk J. Application of zirconium(IV) acetylacetonate to the copolymerization of glycolide with and lactide. Polym. Bull. 42 (1999) 131-139
Dobrzynski P., Li S., Kasperczyk J., Bero M., Gasc F., and Vert M. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone. Part 1. Synthesis and characterization. Biomacromolecules 6 1 (2005) 483-488
Miola-Delaite C., Hamaide T., and Spitz R. Anionic coordinated polymerization of ε-caprolactone with aluminum, zirconium, and some rare earths alkoxides as initiators in the presence of alcohols. Macromol. Chem. Phys. 200 (1999) 1771-1778
Miola-Delaite C., Colomb E., Pollet E., and Hamaide T. Anionic ring opening polymerization of oxygenated heterocycles with supported zirconium and rare earths alkoxides as initiators in protic conditions. Towards a catalytic heterogeneous process. Macromol. Symp. 153 (2000) 275-286
Kricheldorf H.R., and Langanke D. Polylactones 54: ring-opening and ring-expansion polymerizations of ε-caprolactone initiated by germanium alkoxides. Polymer 43 (2002) 1973-1977
Pollet E., Hamaide T., Tayakout-Fayolle M., and Jallut C. Heterogeneous anionic ring opening polymerization in a fixed-bed reactor: description of the process and modelling. Polym. Int. 53 5 (2004) 550-556
Miola C., Hamaide T., and Spitz R. End-functionalized poly(ε-caprolactone) oligomers through heterogeneous catalysis in protic conditions: a mechanistic approach. Polymer 38 (1997) 5667-5676
Martin E., Dubois P., and Jérôme R. Preparation of supported yttrium alkoxides as catalysts for the polymerization of lactones and oxirane. J. Polym. Sci., Polym. Chem. 41 (2003) 569-578
Kobayashi S., Uyama H., and Kimura S. Enzymatic polymerization. Chem. Rev. 101 (2001) 3793-3818
Varma I.K., Albertsson A.C., Rajkhowa R., and Srivastava R.K. Enzyme catalysis of polyesters. Prog. Polym. Sci. 30 (2005) 949-981
Uyama H., and Kobayashi S. Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett. (1993) 1149-1150
Knani D., Gutman A.L., and Kohn D.H. Enzymatic polyesterification in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening polymerization of e-caprolactone. J. Polym. Sci., A, Polym. Chem. 31 (1993) 1221-1232
Mei Y., Kumar A., and Gross R. Kinetics and mechanism of Candida Antarctica lipase B catalyzed solution polymerization of ε-caprolactone. Macromolecules 36 (2003) 5530-5536
Garcia-Arrazola R., Gimeno M., and Barzana E. Use of liquid 1,1,2,2-tetrafluoroethane as solvent media for enzyme-catalyzed ring-opening polymerization of lactones. Macromolecules 40 (2007) 4119-4120
Uyama H., Takamoto T., and Kobayashi S. Enzymatic synthesis of polyesters in ionic liquids. Polym. J. 34 (2002) 94-96
Dong H., Wang H., Cao S., and Shen. Lipase-catalyzed polymerization of lactones and linear hydroxyesters. J. Biotechnol. Lett. 20 (1998) 905-908
Cordova A., Iversen T., Hult K., and Martinelle M. Lipase-catalysed formation of macrocycles by ring-opening polymerization of ε-caprolactone. Polymer 39 (1998) 6519-6524
Nobes G.A.R., Kazlauskas R.J., and Marchessault R. Lipase-catalyzed ring opening polymerization of lactones: a novel route to poly(hydroxyalkanoates). Macromolecules 29 (1996) 4829-4833
Van der Mee L., Helmich F., De Bruijn R., Vekemans J., Palmans A., and Meijer E. Investigation of lipase-catalyzed ring-opening polymerizations of lactones with various ring sizes: kinetic evaluation. Macromolecules 39 15 (2006) 5021-5027
Duda A., Kowalski A., Penczek S., Uyama H., and Kobayashi S. Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35 (2002) 4266-4270
Kobayashi S. Enzymatic ring-opening polymerization of lactones by lipase catalyst: mechanistic aspects. Macromol. Symp. 240 (2006) 178-185 (Recent Trends in Ionic Polymerization)
Uyama H., Suda S., Kikuchi H., and Kobayashi S. Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones. Chem. Lett. (1997) 1109-1110
Sivalingam G., and Madras G. Modeling of lipase catalyzed ring-opening polymerization of e-caprolactone. Biomacromolecules 5 (2004) 603-609
Matsumura S., Ebata H., and Toshima K. A new strategy for sustainable recycling using an enzyme: poly(ε-caprolactone). Macromol. Rapid Commun. 21 (2000) 860-863
Al-Azemi T.F., Kondaveti L., and Bisht K.S. Solventless enantioselective ring-opening polymerization of substituted ε-caprolactones by enzymatic catalysis. Macromolecules 35 9 (2002) 3380-3386
Nishida H., Yamashita M., Nagashima M., Endo T., and Tokiwa Y. Synthesis of metal-free poly(1,4-dioxan-2-one) by enzyme-catalyzed ring-opening polymerization. J. Polym. Sci., A, Polym. Chem. 38 (2000) 1560-1567
Feng Y., Klee D., and Hoecker H. Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2,5-dione and d,l-lactide. Macromol. Biosci. 4 (2004) 587-590
Matsumura S., Mabuchi K., and Toshima K. Lipase-catalyzed ring-opening polymerization of lactide. Macromol. Rapid Commun. 18 (1997) 477-482
Matsumura S., Mabuchi K., and Toshima K. Novel ring-opening polymerization of lactide by lipase. Macromol. Symp. 130 (1998) 285-304
Matsumura S., Tsukada K., and Toshima K. Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s. Int. J. Biol. Macromol. 25 (1999) 161-167
Nakaoki T., Mei Y., Miller L., Kumar A., Kalra B., Miller M., Kirk O., Christensen M., and Gross R.A. Candida antarctica lipase B catalyzed polymerization of lactones : effects of immobilization matrices on polymerization kinetics and molecular weight. Ind. Biotechnol. 1 2 (2005) 126-134
Garcia-Arrazola R., Gimeno M., and Barzana E. Use of liquid 1,1,1,2-tetrafluoroethane as solvent media for enzyme-catalyzed ring-opening polymerization of lactones. Macromolecules 40 12 (2007) n4119-n4120
Matsumura S. Enzymatic synthesis of polyesters via ring-opening polymerization. Adv. Polym. Sci. 194 (2006) 95-132
Bourrissou D., Moez-Sanchez S., and Martin-Vaca B. Recent advances in the controlled preparation of poly(α-hydroxy acids): metal-free catalysts and new monomers. C. R. Chimie 10 (2007) 775-794
Shibasaki Y., Sanada H., Hokoi M., Sanda F., and Endo T. Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33 (2000) 4316-4320
Lou X., Detrembleur C., and Jérôme R. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35 (2002) 1190-1195
Myers M., Connor E.F., Glauser Th., Mock A., Nyce G., and Hedrick J.L. Phosphines: nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci., Polym. Chem. 40 (2002) 844-851
Nederberg F., Connor E.F., Möller M., Glauser Th., and Hedrick J.L. New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew. Chem. Int. Ed. 40 (2001) 2712-2715
Connor E.F., Nyce G.W., Myers M., Möck A., and Hedrick J.L. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 124 (2002) 914-915
Nyce G.W., Glauser Th., Connor E.F., Möck A., Waymouth R.M., and Hedrick J.L. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc. 125 (2003) 3046-3056
Coulembier O., Dove A.P., Pratt R.C., Sentman A.C., Culkin D.A., Mespouille L., Dubois Ph., Waymouth R.M., and Hedrick J.L. Latent thermally activated organic catalysts for the on-demand living polymerization of lactide. Angew. Chem. Int. Ed. 44 31 (2005) 4964-4968
Dove A.P., Pratt R.C., Lohmeijer B.G.G., Culkin D.A., Hagberg E.C., Nyce G.W., Waymouth R.M., and Hedrick J.L. N-heterocyclic carbenes: effective organic catalysts for living polymerization. Polymer 47 (2006) 4018-4025
Dove A.P., Li H., Pratt R.C., Lohmeijer B.G.G., Culkin D.A., Waymouth R.M., and Hedrick J.L. Steroselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. (2006) 2881-2883
Coulembier O., Lohmeijer B.G.G., Dove A.P., Pratt R.C., Mespouille L., Culkin D.A., Benight S., Dubois P., Waymouth R.M., and Hedrick J.L. Alcohol adducts of N-heterocylic carbenes : latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39 (2006) 5617-5628
Hohmeijer B.G.G., Pratt R.C., Leibfarth F., Logan J.W., Long D.A., Dove A.P., Nederberg F., Choi J., Wade C., Waymouth R.M., and Hedrick J.L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39 (2006) 8574-8583
Zhang L., Nederberg F., Pratt R.C., Waymouth R.M., Hedrick J.L., and Wade C.G. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40 (2007) 4154-4158
Pratt R.C., Lohmeijer B.G.G., Long D.A., Waymouth R., and Hedrick J.L. Triazabicyclodecene: a simple bifunctional organocatalyst for acy transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128 (2006) 4556-4557
Tai H., Popov V.K., Shakesheff K.M., and Howdle S.M. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochem. Soc. Trans. 35 (2007) 516-521
Stassin F., Halleux O., and Jérôme R. Ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 34 (2001) 775-781
Stassin F., and Jérôme R. Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. J. Chem. Soc., Chem. Commun. (2003) 232-233
Bratton D., Brown M., and Howdle S. Tin(II) ethyl hexanoate catalyzed precipitation polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 38 4 (2005) 1190-1195
Hile D.D., and Pishko M.V. Copolymerization of d,l-lactide and glycolide in supercritical carbon dioxide. J. Polym. Sci., A, Polym. Chem. 39 (2001) 562-570
Bratton D., Brown M., and Howdle S. Suspension polymerization of l-lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer. Macromolecules 36 16 (2003) 5908-5911
Loeker F.C., Duxbury C.J., Kumar R., Gao W., Gross R.A., and Howdle S.M. Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 37 (2004) 2450-2453
Takamoto T., Uyama H., and Kobayashi S. Lipase-catalyzed degradation of polyester in supercritical carbon dioxide. Macromol. Biosci. 1 (2001) 215-218
Matsumura S., Ebata H., Kondo R., and Toshima K. Organic solvent-free enzymatic transformation of poly(ε-caprolactone) into repolymerizable oligomers in supercritical carbon dioxide. Macromol. Rapid Commun. 22 (2001) 1325-1329
Thurecht K., Heise A., de Geus M., Villarroya S., Zhou J., Wyatt M., and Howdle S. Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 39 23 (2006) 7967-7972
Villarroya S., Zhou J., Thurecht K., and Howdle S. Synthesis of graft copolymers by the combination of ATRP and enzymatic ROP in scCO2. Macromolecules 39 26 (2006) 9080-9086
Villaroya S., Thurecht K.J., Heise A., and Howddle S.M. Supercritical CO2: an effective medium for the chemo-enzymatic synthesis of block copolymers?. Chem. Commun. (2007) 3805-3813
Thurecht K.J., Gregory A.M., Villaroya S., Zhou J., Heise A., and Howdle S.M. Simultaneous enzymatic ring opening polymerization and RAFT mediated polymerization in supercritical CO2. Chem. Commun. (2006) 4383-4385
Jérôme R., and Lecomte Ph. New developments in the synthesis of aliphatic polyesters by ring-opening polymerization. Biodegradable Polymers for Industrial Applications (2005) 77-106
Tom J.W., Lim G.B., Debenetti P.G., and Prud'homme R.K. Applications of supercritical fluids in controlled release of drugs. In: Brennecke J.G., and Kiran E. (Eds). Supercritical Fluid Engineering Science. ACS symposium series vol. 514 (1993), American Chemical Society, Washington (DC) 238-257
Reverchon E., Della Porta G., De Rosa I., and Subra P. Letourneur, supercritical antisolvent micronisation of some biopolymers. J. Supercrit. Fluids 18 (2000) 239-245
Rantakylä M., Jäntti M., Aaltonen O., and Hurme M. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. J. Supercrit. Fluids 24 (2002) 251-263
Chattopadhay P., and Gupta R. Supercritical CO2 based production of magnetically responsive micro- and nanoparticles for drug targeting. Ind. Eng. Chem. Res. 41 (2002) 6049-6058
Perrut M., Jung J., and Leboeuf F. Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes Part II: preparation of composite particles. Int. J. Pharm. 288 1 (2005) 11-16
Stassin F., and Jérôme R. Contribution of supercritical CO2 to the preparation of aliphatic polyesters and materials thereof. Macromol. Symp. 217 (2004) 135-146
Bratton D., Brown M., and Howdle S.M. Synthesis of poly(glycolide) in supercritical carbon dioxide in the presence of a hydrocarbon stabiliser. Chem. Commun. (2004) 808-809
Ganapathy H., Subban H., Ha S., Jeong Y., Tae L., Won-Ki L., and Kwon T. Ring-opening polymerization of l-lactide in supercritical carbon dioxide using PDMS based stabilizers. Eur. Polym. J. 43 1 (2006) 119-126
Slomkowski S., Gadzinowski M., Sosnowski S., Radomska-Galant I., Pucci A., De Vita C., and Ciardelli F. Nanoparticles from polylactide and polyether block copolymers: formation, properties, encapsulation, and release of pyrene-fluorescent model of hydrophobic drug. J. Nanosci. Nanotechnol. 6 (2006) 3242-3251
Slomkowski S. Polyester nano- and micro-particles by polymerization and by self-assembly of macromolecules. In: Domb A.J., Tabata Y., Ravi Kumar M.N.V., and Farber S. (Eds). Nanoparticles for Pharmaceutical Applications (2007) 287-303
Huh K., Cho Y.W., and Park K. PLGA-PEG copolymers. Drug Deliv. Technol. 3 8 (2003)
Lou X., Detrembleur C., and Jérôme R. Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol. Rapid Commun. 24 2 (2003) 161-172
Ponsart S.., Coudane J., and Vert M. A novel route to poly(ε-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 1 (2000) 275-281
Tian D., Dubois Ph., Grandfils Ch., and Jérôme R. Ring-opening polymerization of 1,4,8 trioxaspiro[4.6]-9-undecanone: a new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30 (1997) 406-409
Tian D., Dubois Ph., and Jérôme R. Ring-opening polymerization of 1,4,8-trioxaspiro-[4.6]-9-undecanone. A route to novel molecular architectures for biodegradable aliphatic polyesters. Macromol. Symp. 130 (1998) 217-227
Detrembleur Ch., Mazza M., Halleux O., Lecomte Ph., Mecerreyes D., Hedrick J.L., and Jérôme R. Ring-opening polymerization of γ-bromo-ε-caprolactone: a novel route to functionalized aliphatic polyesters. Macromolecules 33 (2000) 14-18
Mecerreyes D., Atthoff B., Boduch K.A., Trollsaas M., and Hedrick J.L. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 32 (1999) 5175-5182
Mecerreyes D., Humes J., Miller R.D., Hedrick J.L., Lecomte Ph., Detrembleur Ch., and Jérôme R. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid Commun. 21 (2000) 779-784
Gautier S., d'Aloia V., Halleux O., Mazza M., Lecomte Ph., and Jérôme R. Amphiphilic copolymers of ε-caprolactone and γ-substituted ε-caprolactone. Synthesis and functionalization of poly(d,l-lactide) nanoparticles. J. Biomater. Sci., Polym. Ed. 14 (2003) 63-85
Stassin F., Halleux O., Dubois P., Detrembleur C., Lecomte P., and Jérôme R. Ring opening copolymerization of ε-caprolactone, γ-(triethylsilyloxy)-ε-caprolactone and γ-ethylene ketal-ε-caprolactone: a route to hetero-graft copolyesters. Macromol. Symp. 153 (2000) 27-39
Vert M. Chemical routes to poly(β-malic acid) and potential applications to this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polym. Degrad. Stab. 59 (1998) 169-175
Coulembier O., Degée P., Hedrick J.L., and Dubois P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(beta-malic acid). Prog. Polym. Sci. 31 (2006) 723-747
Coulembier O., Ghisdal J., Degée Ph., and Dubois Ph. Benzyl beta-malolactonate: synthesis, copolymerization and design of novel biodegradable macromolecular surfactants. Arkivok 10 (2007) 57-70
Coulembier O., Mespouille L., Hedrick J.L., Waymouth R.M., and Dubois P. Metal-free catalysed ring-opening polymerisation of β-lactones: synthesis of amphiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules 39 (2006) 4001-4008
Coulembier O., Degee P., Gerbaux P., Wantier P., Barbaud C., Flammang R., Guerin P., and Dubois P. Synthesis of amphiphilic poly((R,S)-beta-malic acid)-graft-poly(ε-caprolactone): "Grafting from" and "grafting through" approaches. Macromolecules 38 (2005) 3141-3150
Coulembier O., Degee P., and Dubois P. Synthesis and micellization properties of novel symmetrical poly(ε-caprolactone-b-[R,S] beta-malic acid-b-ε-caprolactone) triblock copolymers. Macromol. Chem. Phys. 207 (2006) 484-491
Bizzarri R., Chillini F., Solaro R., Chiellini E., Cammas-Marion S., and Guerin P. Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications. Macromolecules 35 (2002) 1215-1223
Barbaud C., Fay F., Abdillah F., Randriamahefa S., and Guérin P. Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of α,α′,β-trisubstituted β-lactones. Macromol. Chem. Phys. 205 (2004) 199
Mecerreyes D., Miller R.D., Hedrick J.L., Detrembleur Ch., and Jérôme R. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: novel biodegradable copolymers containing allyl pendent groups. J. Polym. Sci., Polym. Chem. 38 (2000) 870-875
Lou X., Detrembleur Ch., Lecomte Ph., and Jérôme R. Controlled synthesis and chemical modification of unsaturated aliphatic (Co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci., Polym. Chem. 40 (2002) 2286-2297
Latere J.P., Lecomte Ph., Dubois Ph., and Jérôme R. 2-Oxepane-1,5-dione: a precursor of a novel class of versatile semicrystalline biodegradable (Co)polyesters. Macromolecules 35 (2002) 7857-7859
Detrembleur C., Mazza M., Lou X., Halleux O., Lecomte Ph., Mecerreyes D., Hedrick J.L., and Jérôme R. New functional aliphatic polyesters by chemical modification of copolymers of ε-caprolactone with γ-(2-Bromo-2-methylpropionate)-ε-caprolactone, γ-Bromo-ε-caprolactone, and a mixture of β- and γ-Ene-ε-caprolactone. Macromolecules 33 21 (2000) 7751-7760
Vroman B., Mazza M., Fernandez M.R., Jérôme R., and Préat V. Copolymers of ε-caprolactone and quaternized ε-caprolactone as gene carriers. J. Control. Release 118 1 (2007) 136-144
Benabdillah M.K., Coudane J., Boustta M., Engel R., and Vert M. Synthesis and characterization of novel degradable polyesters derived from d-gluconic and glycolic acids. Macromolecules 32 (1999) 8774-8780
Ouchi T., Nozaki T., Ishikawa A., Fujimoto I., and Ohya Y. Synthesis and enzymatic hydrolysis of lactic acid-depsipeptide copolymers with functionalized pendant groups. J. Polym. Sci., A, Polym. Chem. 35 (1997) 377-383
Barrera D.A., Zylstra E., Lansbury P.T., and Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J. Am. Chem. Soc. 115 (1993) 11010-11011
Leemhuis M., van Nostrum C.F., Kruijtzer J.A.W., Zhong Z.Y., ten Breteler M.R., Dijkstra P.J., Feijen J., and Hennink W.E. Functionalized Poly(α-hydroxy acid)s via ring-opening polymerization: toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39 10 (2006) 3500-3508
Gerhardt W.W., Noga D.E., Hardcastle K.I., Garci{dotless}a A.J., Collard D.M., and Weck M. Functional lactide monomers: methodology and polymerization. Biomacromolecules 8 (2007) 1735-1742
Loontjes C.A.M., Vermonden T., Leemhuis M., van Steenbergen J.J., van Nostrum C.F., and Hennink W.E. Synthesis and characterization of random and triblock copolymers of ε-caprolactone and (benzylated)hydroxymethyl glycolide. Macromolecules 40 (2007) 7208-7216
Wsang L., Jia X., and Yuan Z. Synthesis and characterization of novel functionalized polylactides with pendant hydroxyl arms. Polymer 47 (2006) 6978-6985
Trollsas M., Lee V.Y., Mecerreyes D., Loewenhielm P., Moeller M., Robert D., and Hedrick J.L. Hydrophilic Aliphatic Polyesters: Design, Synthesis, and Ring-Opening Polymerization of Functional Cyclic Esters. Macromolecules 33 13 (2000) 4619-4627
Rieger J., Bernaerts K.V., Du Prez F.E., Jérôme R., and Jérôme C. Lactone end-capped Poly(ethylene oxide) as a new building block for biomaterials. Macromolecules 37 26 (2004) 9738-9745
Rieger J., Dubois P., Jérôme R., and Jérôme C. Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers. Langmuir 22 18 (2006) 7471-7479
Rieger J., Passirani C., Benoit J.P., Van Butsele K., Jérôme R., and Jérôme C. Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles. Adv. Funct. Mater. 16 11 (2006) 1506-1514
Cho K.Y., Kim C.H., Lee J.W., and Park J.K. Synthesis and characterization of poly(ethylene glycol) grafted poly(l-lactide). Macromol. Rapid Commun. 20 (1999) 598-601
Saulnier B., Ponsart S., Coudane J., Garreau H., and Vert M. Lactic acid-based functionalized polymers via copolymerization and chemical modification. Macromol. Biosci. 4 (2004) 232-237
Huang M.H., Coudane J., Li S., and Vert M. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of di-hydroxy PCL combined with the ring opening polymerization of lactide. J. Polym. Sci., Polym. Chem. 43 (2005) 4196-4205
Gimenez S., Ponsart S., Coudane J., and Vert M. Synthesis, properties and in vitro degradation of carboxyl-bearing PCL. J. Bioact. Compat. Polym. 16 (2001) 32-46
Ponsart S., Coudane J., Morgat J.L., and Vert M. Synthesis of 3H and fluorescence-labelled poly (dl-Lactic acid). J. Label. Compd. Radiopharam. 44 (2001) 677-687
Nottelet B., Coudane J., and Vert M. Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly(ε-caprolactone). Biomaterials 27 (2006) 4948-4954
Ponsart S., Coudane J., McGrath J., and Vert M. Study of the grafting of bromoacetylated α-hydroxy-methoxypoly(ethyleneglycol) onto anionically activated poly(ε-caprolactone). J. Bioact. Compat. Polym. 17 (2002) 417-432
Parrish B., and Emrick T. Aliphatic polyesters with pendant cyclopentene groups: controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 37 (2004) 5863-5865
Taniguchi I., Mayes A.M., Chan E.W.L., and Griffith L.G. A chemoselective approach to grafting biodegradable polyesters. Macromolecules 38 (2005) 216-219
Taniguchi I., Kuhlman W.A., Mayes A.M., and Griffith L.G. Functional modification of biodegradab le polyesters through a chemoselective approach: application to biomaterial surfaces. Polym. Int. 55 (2006) 1385-1397
Emma L., Prime E., Justin J., Cooper-White J.J., and Qiao G.G. Coupling hydrophilic amine-containing molecules to the backbone of poly(ε-caprolactone). Aust. J. Chem. 59 (2006) 534-538
Van Horn B.A., and Wooley K.L. Toward cross-linked degradable polyester materials: investigations into the compatibility and use of reductive amination chemistry for cross-linking. Macromolecules 40 (2007) 1480-1488
Mecerreyes D., Humes J., Miller H.R.D., Hedrick J.L., Detrembleur C., Lecomte P., Jérôme R., and SanRoman J. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid Commun. 21 (2000) 779-784
Rieger J., Van Butsele K., Lecomte P., Detrembleur C., Jérôme R., and Jérôme C. Versatile functionalization and grafting of poly(ε-caprolactone) by Michael-type addition. Chem. Commun. (2005) 274-276
Lou X., Detrembleur Ch., Lecomte Ph., and Jérôme R. Two-step backbiting reaction in the ring-opening polymerization of γ-Acryloyloxy-ε-caprolactone initiated with aluminum isopropoxide. Macromol. Rapid Commun. 23 (2002) 126-129
Mecerreyes D., Moineau G., Dubois Ph., Jérôme R., Hedrick J.L., Hawker C.J., Malmström E.E., and Trollsas M. Simultaneous dual living polymerizations: a novel one-step approach to block and graft copolymers. Angew. Chem. Int. Ed. 37 (1998) 1274-1276
Riva R., Lenoir S., Jérôme R., and Lecomte Ph. Functionalization of poly(ε-caprolactone) by pendant hydroxyl, carboxylic acid and epoxide groups by atom transfer radical addition. Polymer 46 (2005) 8511-8518
Riva R., Rieger J., Jérôme R., and Lecomte Ph. Heterograft copolymers of poly(ε-caprolactone) prepared by combination of ATRA "grafting onto" and ATRP "grafting from" processes. J. Polym. Sci., Polym. Chem. 44 20 (2006) 6015-6024
Lenoir S., Riva R., Lou X., Detrembleur Ch., Jérôme R., and Lecomte Ph. Ring-opening polymerization of α-chloro-ε-caprolactone and chemical modification of Poly(α-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules 37 (2004) 4055-4061
Rostovstev V.V., Green L.G., Fokin V.V., and Sharpless K.B. Stepwise cycloaddition process: copper (I) catalyzed regioselective ligation of azides and termival alkynes. Angew. Chem., Int. Ed. 41 (2002) 2596-2599
Parrish B., Breitenkamp R., and Emrick T. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127 (2005) 7404-7410
Riva R., Schmeits S., Jérôme C., Jérôme R., and Lecomte P. Combination of ring-opening polymerization and "click chemistry": toward functionalization and grafting of Poly(ε-caprolactone). Macromolecules 40 4 (2007) 796-803
Riva R., Schmeits S., Stoffelbach F., Jérôme C., Jérôme R., and Lecomte Ph. Combination of ring-opening polymerization and "click" chemistry towards functionalization of aliphatic polyesters. J. Chem. Soc., Chem. Commun. (2005) 5334-5336
Lutz J.F. 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed. 46 7 (2007) 1018-1025
Eguiburu J.L., Fernandez-Berridi M.J., and San Roman J. Ring opening polymerization of l-lactide initiated by oxyethyl methacrylate-aluminum trialkoxides Part 2. End groups exchange. Polymer 41 (2000) 6439-6445
Dubois Ph., Ropson N., Jérôme R., and Teyssié Ph. Macromolecular engineering of polylactones and polylactides. 19. kinetics of ring-opening polymerization of ε-caprolactone initiated with functional aluminum alkoxides. Macromolecules 29 (1996) 1965-1975
Barakat I., Dubois Ph., Grandfils Ch., and Jérôme R. Macromolecular engineering of polylactones and polylactides. XXV. Synthesis and characterization of bioerodible amphiphilic networks and their use as controlled drug delivery systems. J. Polym. Sci., Polym. Chem. 37 (1999) 1401-2411
Vangeyte P., and Jérôme R. Amphiphilic block copolymers of high-molecular-weight poly(ethylene oxide) and either ε-caprolactone or γ-methyl-ε-caprolactone: Synthesis and characterization. J. Polym. Sci., A, Polym. Chem. 42 5 (2004) 1132-1142
Mahmud A., Xiong X.B., and Lavasanifar A. Novel self-associating Poly(ethyleneoxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39 26 (2006) 9419-9428
Govender T., Riley T., Ehtezazi T., Garnett M.C., Stolnik S., Illum L., and Davis S.S. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm. 199 1 (2000) 95-110
Gong C.Y., Qian Z., Liu C., Huang M., Gu Y., Wen Y., Kan B., Wang K., Dai M., Li X., Gou M., Tu, and Wei Y. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) block copolymers. Smart Mater. Struct. 16 3 (2007) 927-933
Van Butsele K., Stoffelbach F., Jérôme R., and Jérôme C. Synthesis of novel amphiphilic and pH-sensitive ABC miktoarm star terpolymers. Macromolecules 39 17 (2006) 5652-5656
Yu X.H., Feng J., and Zhuo R.X. Preparation of hyperbranched aliphatic polyester derived from functionalized 1,4-dioxan-2-one. Macromolecules 38 15 (2005) 6244-6247
Matsumura S., Beppu H., and Toshima K. Enzymatic preparation of malate-based polycarboxylates having higher molecular weights by copolymerization with lactone. Chem. Lett. (1999) 249-250
Matsumura S., Tsukada K., and Toshima K. Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s. Int. J. Biol. Macromol. 25 (1999) 161-167
He F., Wang Y., Feng J., Zhuo R., and Wang X. Synthesis of poly[(5-benzyloxy-trimethylene carbonate)-co-(5,5-dimethyl-trimethylene carbonate)] catalyzed by immobilized lipase on silica particles with different size. Polymer 44 (2003) 3215-3219
He F., Li S., Vert M., and Zhuo R. Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol). Polymer 44 (2003) 5145-5151
Kumar A., Gross R.A., Wang Y., and Hillmyer M.A. Recognition by lipases of ω-hydroxyl macroinitiators for diblock copolymer synthesis. Macromolecules 35 (2002) 7606-7611
Namekawa S., Uyama H., and Kobayashi S. Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation. Biomacromolecules 1 (2000) 335-338
Namekawa S., Suda S., Uyama H., and Kobayashi S. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. Int. J. Biol. Macromol. 25 (1999) 145-151
Uyama H., Suda S., and Kobayashi S. Enzymic synthesis of terminal-functionalized polyesters by initiator method. Acta Polym. 49 (1998) 700-703
Uyama H., Kobayashi S., Morita M., Habaue S., and Okamoto Y. Chemoselective ring-opening polymerization of a lactone having exo-methylene group with lipase catalysis. Macromolecules 34 (2001) 6554-6556
Habaue S., Asai M., Morita M., Okammoto Y., Uyama H., and Kobayashi S. Chemospecific ring-opening polymerization of α-methylenemacrolides. Polymer 44 (2003) 5195-5200
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.