[en] We have collated published records of carbon storage (wt% calcium carbonate and organic carbon) in polar North Atlantic sediments in order to assess the role that the glacial history of Greenland and Fennoscandia may have had on carbon cycling in this oceanographically important region. The proportion of carbonate in sediment varies between 0 and similar to 50%, while that of organic carbon varies between 0 and similar to 2.0%. The spatial variation of the concentration and accumulation of both constituents is markedly different. Bulk accumulation shows a strong relationship with depth, distance offshore, and the location of major glacial outlets on neighboring landmasses. Therefore, ice sheet dynamics and erosion influence carbon (especially organic carbon) storage strongly during the late Weichselian (27-12 C-14 ka) via their impact on sedimentation rates and constituents. In contrast, water mass characteristics are important in determining the pattern of carbon storage during the Holocene. Carbonate fluxes to the polar North Atlantic sediment Column fall by similar to50% during glacials to similar to 1.1 x 10(13) kg kyr(-1), but organic carbon storage is maintained at or greater than interglacial levels (similar to 4.6 x 10(11) kg kyr(-1)). This represents a 100% change in the ratio of preserved inorganic to organic carbon. When combined with reduced deep water ventilation, respiration of this relatively greater organic carbon flux in both the water and sediment columns provides a good explanation for the observed periodic enhanced dissolution of carbonate in polar North Atlantic late Weichselian sections. perhaps enhancing CO2 storage in deep waters.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Taylor, Justin; University of Bristol > School of Geographical Sciences > Bristol Glaciology Centre
Tranter, Martyn; University of Bristol > School of Geographical Sciences > Bristol Glaciology Centre
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Language :
English
Title :
Carbon cycling and burial in the glacially influenced polar North Atlantic
Publication date :
2002
Journal title :
Paleoceanography
ISSN :
0883-8305
eISSN :
1944-9186
Publisher :
Amer Geophysical Union, Washington, United States - District of Columbia
Volume :
17
Issue :
1
Pages :
1001
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique NERC - Natural Environment Research Council The Royal Society (Royaume-Uni)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anklin M., Schwander J., Stauffer B., Tschumi J., Fuchs A., Barnola J.M., Raynaud D. (1997) CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core. J. Geophys. Res 102:26539-26545.
Archer D. (1996) A data-driven model of the global calcite isyocline. Global Biogeochem. Cycles 10:511-526.
Archer D., Maier-Reimer E. (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260-264.
Archer D., Winguth A., Lea D., Mahowald N. (2000) What caused the glacial/interglacial pCO2 cycles?. Rev. Geophys 38:159-189.
Bamber J.L., Hardy R.J., Joughin I. (2000) An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. J. Glaciol 152:67-75.
Berger W.H. (1989) Global maps of ocean productivity. Productivity of the Ocean: Present and Past , edited by W. H. Berger, V. S. Smetacek, and G. Wefer, John Wiley, New York; 429-455.
Berger W.H., Smetacek V.S., Wefer G. (1989) Ocean productivity and paleoproductivity. Productivity of the Ocean: Present and Past , edited by W. H. Berger, V. S. Smetacek, and G. Wefer, John Wiley, New York; 1-34.
Baumann K.-H., Lackschewitz K.S., Erlenkeuser H., Henrich R., Jünger B. (1993) Late quaternary calcium carbonate sedimentation and terrigenous input along the East Greenland continental margin. Mar. Geol 114:13-36.
Biscaye P.E., Kolla V., Turekian K.K. (1976) Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J. Geophys. Res 81:2595-2603.
Bouscein B., Stein R. (2000) Particulate organic matter in surface sediments of the Laptev Sea (Arctic Ocean): Application of mackerel analysis as organic-carbon-source indicator. Mar. Geol 162:573-586.
Broecker W.S. (1982) Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr 11:151-197.
Broecker W.S., Peng T.H. Tracers in the Sea, Lamont-Doherty Earth Obs., Palisades, N. Y; 1982.
Broecker W.S., Peng T.H. (1989) The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochem. Cycles 3:215-239.
Bugge T., Belderson R.H., Kenyon N.H. (1988) The storegga slide. Philos. Trans. R. Soc. London , Ser. A; 325:357-388.
Calvert S.E. (1987) Oceanographic controls on the accumulation of organic matter in marine sediments. Marine Petroleum Source Rocks , edited by J. Brooks, and A. J. Fleet, Geol. Soc. Spec. Publ; 26:137-151.
Catubig N.R., Archer D.E., Francois R., deMenocal P., Howard W., Yu E.-F. (1998) Global deep-sea burial rate of calcium carbonate during the last glacial maximum. Paleoceanography 13:298-310.
Dowdeswell J.A., Siegert M.J. (1999) Ice-sheet numerical modeling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins. Bull. Geol. Soc. Am 111:1080-1097.
Dowdeswell J.A., Kenyon N.H., Elverhoi A., Laberg J.S., Hollender F.-J., Mienert J., Siegert M.J. (1996) Large-scale sedimentation on the glacier-influenced polar North Atlantic margins: Long-range side-scan sonar evidence. Geophys. Res. Lett 23:3535-3538.
Dowdeswell J.A., Whittington R.J., Jennings A.E., Andrews J.T., Mackensen A., Marienfeld P. (2000) An origin for laminated glacimarine sediments through sea-ice build-up and suppressed iceberg rafting. Sedimentology 47:557-576.
Elderfield H., Rickaby R.E.M. (2000) Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405:305-310.
Elverhøi A., Dowdeswell J.A., Funder S., Mangerud J., Stein R. (1998) Glacial and oceanic history of the polar North Atlantic margins: An overview. Quat. Sci. Rev 17:1-10.
Elverhoi A., Hooke R.L., Solheim A. (1998) Late Cenozoic erosion and sediment yield from the Svalbard-Barents Sea region: Implications for understanding erosion of glacierized basins. Quat. Sci. Rev 17:209-241.
Emerson S., Hedges J.I. (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3:621-634.
Evans D., King E.L., Kenyon N.H., Brett C., Wallis D. (1996) Evidence for long-term instability in the storegga slide region off Western Norway. Mar. Geol 130:281-292.
Fahl K., Stein R. (1999) Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: Problems and perspectives. Mar. Chem 63:293-309.
Falkowski P. (2000) The global carbon cycle: A test of our knowledge of Earth as a system. Science 290:291-296.
Funder S., Hjort C., Landvik J.Y., Nam S.I., Rech N., Stein R. (1998) History of a stable ice margin-greenland during the middle and upper Pleistocene. Quat. Sci. Rev 17:77-124.
Haflidason H., Eiriksson J., van Kreveld S. (2000) The tephrochronology of Iceland and the North Atlantic region during the middle and late Quaternary: A review. J. Quat. Sci 15:3-22.
Hammer C.U., Meese D.A. (1993) Dating ice cores. Nature 363:666.
Hansen B., Østerhus S. (2000) North Atlantic-Nordic seas exchanges. Prog. Oceanogr 45:109-208.
Hebbeln D., Wefer G. (1997) Late Quaternary paleoceanography in the Fram Strait. Paleoceanography 12:65-78.
Hebbeln D., Dokken T., Andersen E.S., Hald M., Elverhøi A. (1994) Moisture supply for northern ice-sheet growth during the Last-Glacial-Maximum. Nature 370:357-360.
Hebbeln D., Henrich R., Baumann K.-H. (1998) Paleoceanography of the last interglacial/glacial cycle in the polar North Atlantic. Quat. Sci. Rev 17:125-133.
Henrich R. (1986) A calcite dissolution pulse in the Norwegian-Greenland Sea during the last deglaciation. Geol. Rundsch 75:805-827.
Henrich R. (1998) Dynamics of Atlantic water advection to the Norwegian-Greenland Sea - A time-slice record of carbonate distribution in the last 300 ky. Mar. Geol 145:95-131.
Henrich R., Kassens H., Vogelsang E., Thiede J. (1989) Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka. Mar. Geol 86:283-319.
Hopkins T.S. (1991) The GIN Sea - A synthesis of its physical oceanography and literature review 1972-1985. Earth Sci. Rev 30:175-318.
Howard W.R., Prell W.L. (1994) Late quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9:453-482.
Huber R., Meggers H., Baumann K.-H., Henrich H. (2000) Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea. Mar. Geol 165:123-136.
Keir R.S. (1988) On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3:413-445.
Kellogg T.B. (1976) Late quaternary climatic changes: Evidence from deep-sea cores of Norwegian and Greenland Seas. Investigation of Late Quaternary Paleoceanography and Paleoclimatology , edited by R. M. Cline, and J. D. Hays, Mem. Geol. Soc. Am; 145:77-110.
Kellogg T.B. (1980) Paleoclimatology and paleo-oceanography of the Norwegian and Greenland seas: Glacial-interglacial contrasts. Boreas 9:115-137.
Knies J., Stein R. (1998) New aspects of organic carbon deposition and its paleoceanographic implications along the northern Barents Sea margin during the last 30,000 years. Paleoceanography 13:384-394.
Knies J., Nowaczyk N., Müller C., Vogt C., Stein R. (2000) A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150,000 years. Mar. Geol 163:317-344.
Kuijpers A., Troelstra S.R., Wisse M., Heier Nielsen S., van Weering T.C.E. (1998) Norwegian Sea overflow variability and NE Atlantic surface hydrography during the past 150,000 years. Mar. Geol 152:75-99.
Landvik J.Y., Bondevik S., Elverhoi A., Fjeldskaar W., Mangerud J., Salvigsen O., Siegert M.J., Svendsen J.I., Vorren T.O. (1998) The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quat. Sci. Rev 17:43-75.
Meese D.A. (1994) Preliminary depth-agescale of the GISP2 ice core. Spec. CRREL Rep. 94-1, Cold Regions Res. and Enviorn. Lab., Hanover, N. H; .
Milliman J.D., Droxler A.W. (1996) Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is no bliss. Geol. Rundsch 85:496-504.
Mopper K., Degens E.T. (1979) Organic carbon in the ocean: Nature and cycling. The Global Carbon Cycle , edited by B., Bolin, et al., John Wiley, New York; 293-316.
Mudelsee M. (2001) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quat. Sci. Rev 20:583-589.
Müller P.J., Suess E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the ocean, I, organic carbon preservation. Deep Sea Res 26(PART A):1347-1362.
Munhoven G. Modelling Glacial-interglacial Atmospheric CO2 Variations: The Role of Continental Weathering, thesis, 273 pp., Fac. of Sci., Univ. of Liège, Liège, Belgium; 1997.
Nam S.I., Stein R., Grobe H., Hubberten H. (1995) Late Quaternary glacial-interglacial changes in sediment composition at the East Greenland continental margin and their paleoceanographic implications. Mar. Geol 122:243-262.
Petit J.R. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429-436.
Rasmussen T.L., Thomsen E., van Weering T.C.E., Labeyrie L. (1996) Rapid changes in surface and deep water conditions at the Faeroe margin during the last 58,000 years. Paleoceanography 11:757-771.
Rühlemann C., Müller P.J., Schneider R.R. (1999) Organic carbon and carbonate as paleoproductivity proxies: Examples from high and low productivity areas of the tropical Atlantic. Use of Proxies in Paleoceanography: Examples from the South Atlantic , edited by G. Fischer and G. Wefers, Springer-Verlag, New York; 315-344.
Sarnthein M., Winn K., Zahn R. (1987) Paleoproductivity of oceanic upwelling and the effect of atmospheric CO2 and climate change during deglaciation times. Abrupt Climate Change , edited, by W. H. Berger and L. D. Labeyrie, D. Reidel, Norwell, Mass; 311-337.
Sarnthein M., Winn K., Jung S.J.A., Duplessy J.-C., Labeyrie L., Erlenkeuser H., Ganssen G. (1994) Changes in East Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9:209-267.
Schlüter M., Sauter E.J., Schäfer A., Ritzau W. (2000) Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60°N-80°N). Global Biogeochem. Cycles 14:329-340.
Schneider R.R., Schulz H.D., Hensen C. (2000) Marine carbonates: Their formation and destruction. Marine Geochemistry , edited by H. D. Schultz, and M. Zabel, Springer-Verlag, New York; 283-307.
Schubert C.J., Stein R. (1996) Deposition of organic carbon in Arctic Ocean sediments: Terrigenous supply vs marine productivity. Org. Geochem 24:421-436.
Sejrup H.P., King E.L., Aarseth I., Haflidason H., Elverhoi A. (1996) Quaternary erosion and depositional processes: Western Norwegian fjords, Norwegian Channel and North Sea Fan. Geology of Siliciclastic Shelf Seas , edited by M. De Batist and P. Jacobs, Geol. Soc. Spec. Publ; 117:187-202.
Shaffer G. (1993) Effects of marine biota on global carbon cycling. The Global Carbon Cycle , NATO ASI Ser., Ser. I, edited by M. Heimann, Springer-Verlag, New York; 15:431-455.
Sigman D.M., Boyle E. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859-869.
Smith S.V., Hollibaugh J.T. (1993) Coastal metabolism and the oceanic organic carbon cycle. Rev. Geophys 31:75-89.
Sowers T., Bender M., Labeyrie L., Martinson D., Jouzel J., Raynaud D., Pichon J.J., Korotkevich Y.S. (1993) A 135,000 year Vostok-SPEC-MAP common temporal framework. Paleoceanography 8:737-766.
Stauffer B. (1998) Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period. Nature 392:59-62.
Stein R. (1991) Accumulation of organic carbon in marine sediments. Lect. Notes Earth Sci , 217 pp; 34.
Stein R., Nam S.I., Grobe H., Hubberten H. (1996) Late Quaternary glacial history and short-term ice-rafted debris fluctuations along the East Greenland margin. Late Quaternary Paleoceanography of the North Atlantic Margins , edited by J. T. Andrews et al., Geol. Soc. Spec. Publ; 111:135-151.
Stephens B.B., Keeling R.F. (2000) The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404:171-174.
Svitoch A.A., Taldenkova E.E. (1994) Recent Bering Strait history. Okeanologiya 34:439-443.
Taylor J., Dowdeswell J.A., Siegert M.J. (2001) Depositional processes, fluxes, and sediment volumes on the margins of the Norwegian Sea (62-75°N). Mar. Geol, in press; .
Veum T., Jansen E., Arnold M., Beyer I., Duplessy J.-C. (1992) Water mass exchange between the North Atlantic and Norwegian Sea during the past 28,000 years. Nature 356:783-785.
Whitehead J.A. (1998) Topographic control of oceanic flows in deep passages and straits. Rev. Geophys 36:423-440.
Zreda M., England J., Phillips F., Elmore D., Sharma P. (1999) Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retreat 10,000 years ago. Nature 398:139-142.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.