Unpublished conference/Abstract (Scientific congresses and symposiums)
Constraint Based Learning of Mixtures of Trees
Schnitzler, François; Wehenkel, Louis
2009Probabilistic graphical models for integration of complex data and discovery of causal models in biology
 

Files


Full Text
soumission_Modgraph.pdf
Author preprint (85.23 kB)
Download
Annexes
presentation1.pdf
Publisher postprint (758.49 kB)
presentation
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
mixture; trees; causal learning
Abstract :
[en] Mixtures of trees can be used to model any multivariate distributions. In this work the possibility to learn these models from data by causal learning is explored. The algorithm developed aims at approximating all first order relationships between pairs of variables by a mixture of a given size. This approach is evaluated based on synthetic data, and seems promising.
Research Center/Unit :
Systèmes et modélisation
Disciplines :
Computer science
Author, co-author :
Schnitzler, François ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Constraint Based Learning of Mixtures of Trees
Publication date :
2009
Number of pages :
3
Event name :
Probabilistic graphical models for integration of complex data and discovery of causal models in biology
Event place :
Nantes, France
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 17 May 2010

Statistics


Number of views
70 (7 by ULiège)
Number of downloads
84 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi