Regulation of Etioplast Pigment-Protein Complexes, Inner Membrane Architecture, and Protochlorophyllide a Chemical Heterogeneity by Light-Dependent Nadph:Protochlorophyllide Oxidoreductases a and B
[en] The etioplast of dark-grown angiosperms is characterized by the prolamellar body (PLB) inner membrane, the absence of chlorophyll, and the accumulation of divinyl and monovinyl derivatives of protochlorophyll(ide) a [Pchl(ide) a]. Either of two structurally related, but differentially expressed light-dependent NADPH:Pchlide oxidoreductases (PORs), PORA and PORB, can assemble the PLB and form dark-stable ternary complexes containing enzymatically photoactive Pchlide-F655. Here we have examined in detail whether these polypeptides play redundant roles in etioplast differentiation by manipulating the total POR content and the PORA-to-PORB ratio of etiolated Arabidopsis seedlings using antisense and overexpression approaches. POR content correlates closely with PLB formation, the amounts, spectroscopic properties, and photoreduction kinetics of photoactive Pchlide, the ratio of photoactive Pchlide-F655 to non-photoactive Pchl(ide)-F632, and the ratio of divinyl- to monovinyl-Pchl(ide). This last result defines POR as the first endogenous protein factor demonstrated to influence the chemical heterogeneity of Pchl(ide) in angiosperms. It is intriguing that excitation energy transfer between different spectroscopic forms of Pchl(ide) in etiolated cotyledons remains largely independent of POR content. We therefore propose that the PLB contains a minimal structural unit with defined pigment stoichiometries, within which a small amount of non-photoactive Pchl(ide) transfers excitation energy to a large excess of photoactive Pchlide-F655. In addition, our data suggests that POR may bind not only stoichiometric amounts of photoactive Pchlide, but also substoichiometric amounts of non-photoactive Pchl(ide). We conclude that the typical characteristics of etioplasts are closely related to total POR content, but not obviously to the specific presence of PORA or PORB.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Franck, Fabrice ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie végétale
Sperling, U.
Frick, G.
Pochert, B.
van Cleve, B.
Apel, K.
Armstrong, G. A.
Language :
English
Title :
Regulation of Etioplast Pigment-Protein Complexes, Inner Membrane Architecture, and Protochlorophyllide a Chemical Heterogeneity by Light-Dependent Nadph:Protochlorophyllide Oxidoreductases a and B
Publication date :
December 2000
Journal title :
Plant Physiology
ISSN :
0032-0889
eISSN :
1532-2548
Publisher :
American Society of Plant Biologists, United States - Maryland
Adra A.N., Rebeiz C.A. (1998) Chloroplast biogenesis 81: Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852-856.
Apel K., Santel H.-J., Redlinger T.E., Falk H. (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.): Isolation and characterization of the NADPH-protochlorophyllide oxidoreductase. Eur J Biochem 111:251-258.
Armstrong G.A., Apel K., Rüdiger W. (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist?. Trends Plant Sci 5:40-44.
Armstrong G.A., Runge S., Frick G., Sperling U., Apel K. (1995) Identification of NADPH:Protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505-1517.
Bagyinka C. SPSERV program, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary; 1984.
Beale S.I. (1999) Enzymes of chlorophyll biosynthesis. Photosynthesis Res 60:43-73.
Belanger F.C., Rebeiz C.A. (1980) Chloroplast biogenesis: Detection of divinyl protochlorophyllide in higher plants. J Biol Chem 255:1266-1272.
Bevan M. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711-8721.
Böddi B., Lindsten A., Ryberg M., Sundqvist C. (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76:135-143.
Böddi B., Ryberg M., Sundqvist C. (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra. J Photochem Photobiol B Biol 12:389-401.
Böddi B., Ryberg M., Sundqvist C. (1993) Analysis of the 77 K fluorescence emission and excitation spectra of isolated etioplast inner membranes. J Photochem Photobiol B Biol 21:125-133.
Carey E.E., Rebeiz C.A. (1985) Chloroplast biogenesis 49: Differences among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1-6.
Cohen C.E., Rebeiz C.A. (1981) Chloroplast biogenesis 34: Spectral fluorometric characterization in situ of the protochlorophyll species in etiolated tissues of higher plants. Plant Physiol 67:98-103.
Eullaffroy P., Popovic R., Franck F. (1998) Changes of chlorophyll(ide) fluorescence yield induced by a short light pulse as a probe to monitor the early steps of etioplast phototransformation in dark-grown leaves. Photochem Photobiol 67:676-682.
Fradkin L.I., Shlyk A.A., Kalina L.M., Faludi-Dániel Á. (1969) Fluorescence studies on the reaction centers of chlorophyll biosynthesis in the early stages of greening. Photosynthetica 3:326-337.
Franck F., Strzalka K. (1992) Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley. FEBS Lett 309:73-77.
Granick S., Gassman M. (1970) Rapid regeneration of protochlorophyllide650. Plant Physiol 45:201-205.
Griffiths W.T. (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681-692.
Holtorf H., Reinbothe S., Reinbothe C., Bereza B., Apel K. (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc Natl Acad Sci USA 92:3254-3258.
Holtorf S., Apel K., Bohlmann H. (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637-646.
Ignatov N.V., Krasnovskiï A.A. Jr., Litvin F.F., Belyaeva O., Walter G. (1983) Low-temperature (77 K) excitation spectra of fluorescence and phosphorescence of native forms of protochlorophyll(ide) in etiolated leaves of Phaseolus vulgaris and P. coccineus. Photosynthetica 17:352-360.
Ikeuchi M., Murakami S. (1982) Measurement and identification of NADPH:Protochlorophyllide oxidoreductase solubilized with Triton X-100 from etioplast membranes of squash cotyledons. Plant Cell Physiol 23:1089-1099.
Ioannides I.M., Fasoula D.A., Robertson K.R., Rebeiz C.A. (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem System Ecol 22:211-220.
Joyard J., Block M., Pineau B., Albrieux C., Douce R. (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:Protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265:21820-21827.
Kahn A., Boardman N.K., Thorne S.W. (1970) Energy transfer between protochlorophyllide molecules: Evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex in vivo and in vitro. J Mol Biol 48:85-101.
Kim J.S., Kolossov V., Rebeiz C.A. (1997) Chloroplast biogenesis 76: Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyllide a is controlled by plastid membrane and stromal factors. Photosynthetica 34:569-581.
Klement H., Helfrich M., Oster U., Schoch S., Rüdiger W. (1999) Pigment-free NADPH:Protochlorophyllide oxidoreductase from Avena sativa L.: Purification and substrate specificity. Eur J Biochem 265:862-874.
Knaust R., Seyfried B., Schmidt L., Schulz R., Senger H. (1993) Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:Protochlorophyllide oxidoreductase of barley expressed in Escherichia coli. J Photochem Photobiol B Biol 20:161-166.
Kümmel H.W., Grimme L.H. (1974) The inhibition of carotenoid biosynthesis in green algae by Sandoz H6706: Accumulation of phytoene and phytofluene in Chlorella fusca. Z Naturforsch 30 c:333-336.
Lebedev N., Timko M.P. (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96:9954-9959.
Lebedev N., Van Cleve B., Armstrong G., Apel K. (1995) Chlorophyll synthesis in a de-etiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655. Plant Cell 7:2081-2090.
Lebedev N.N., Siffel P., Krasnovskii A.A. (1985) Detection of protochlorophyllide forms in irradiated green leaves and chloroplasts by difference fluorescence spectroscopy at 77 K. Photosynthetica 19:183-187.
McCormac D.J., Marwood C.A., Bruce D., Greenberg B.M. (1996) Assembly of photosystem I and II during the early phases of light-induced development of chloroplasts from proplastids in Spirodela oligorrhiza. Photochem Photobiol 63:837-845.
Ouazzani Chahdi M.A.O., Schoefs B., Franck F. (1998) Isolation and characterization of photoactive complexes of NADPH:Protochlorophyllide oxidoreductase from wheat. Planta 206:673-680.
Reinbothe C., Lebedev N., Reinbothe S. (1999) A protochlorophyllide light-harvesting complex involved in deetiolation of higher plants. Nature 397:80-84.
Reinbothe S., Reinbothe C., Lebedev N., Apel K. (1996) PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell 8:763-769.
Runge S., Sperling U., Frick G., Apel K., Armstrong G.A. (1996) Distinct roles for light-dependent NADPFI:Protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9:513-523.
Ryberg M., Artus N., Böddi B., Lindsten A., Wiktorsson B., Sundqvist C. (1992) Pigment-protein complexes of chlorophyll precursors., JH Argyroudi-Akoyunoglou, ed, Regulation of Chloroplast Biogenesis. Plenum Press, New York; 217-224.
Ryberg M., Sundqvist C. (1982) Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiol Plant 56:125-132.
Ryberg M., Sundqvist C. (1991) Structural and functional significance of pigment-protein complexes of chlorophyll precursors., H Scheer, ed, Chlorophylls. CRC Press, Boca Raton, FL; 587-612.
Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, Ed 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989.
Scheumann V., Klement H., Helfrich M., Oster U., Schoch S., Rüdiger W. (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445:445-448.
Schoch S., Helfrich M., Wiktorsson B., Sundqvist C., Rüdiger W., Ryberg M. (1995) Photoreduction of zinc protopheophorbide b with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum L.). Eur J Biochem 229:291-298.
Schoefs B., Bertrand M., Franck F. (2000) Spectroscopic properties of protochlorophyll(ide) analyzed in situ in the course of etiolation and in illuminated leaves. Photochem Photobiol 72:85-93.
Schoefs B., Franck F. (1998) Chlorophyll synthesis in dark-grown pine primary needles. Plant Physiol 118:1159-1168.
Schoefs B., Garnir H.P., Bertrand M. (1994) Comparison of the photoreduction of protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown bean as a function of age. Photosynth Res 41:405-417.
Seyyedi M., Timko M.P., Sundqvist C. (1999) Protochlorophyllide, NADPH-protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1 mutant of pea. Physiol Plant 106:344-354.
Shioi Y., Takamiya K.I. (1992) Monovinyl and divinyl protochlorophyllide pools in etiolated tissues of higher plants. Plant Physiol 100:1291-1295.
Sironval C., Brouers M. (1970) The reduction of protochlorophyllide into chlorophyllide: II. The temperature dependence of the P657-647 → P688-676 phototransformation. Photosynthetica 4:38-47.
Spano A.J., He Z., Michel H., Hunt D.F., Timko M.P. (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:Protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967-972.
Sperling U., Franck F., Van Cleve B., Frick G., Apel K., Armstrong G.A. (1998) Etioplast differentiation in Arabidopsis: Both PORA and PORB restore the prolamellar body membrane and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283-296.
Sperling U., Frick G., Van Cleve B., Apel K., Armstrong G.A. (1999) Pigment-protein complexes, plastid development and photooxidative protection: The effects of PORA and PORB overexpression on Arabidopsis seedlings shifted from far-red to white light., JH Argyroudi-Akoyunoglou and H Senger, eds, The Chloroplast: From Molecular Biology to Biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands; 97-102.
Sperling U., Van Cleve B., Frick G., Apel K., Armstrong G.A. (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649-658.
Suzuki J.Y., Bauer C.E. (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. J Biol Chem 270:3732-3740.
Tripathy B.C., Rebeiz C.A. (1985) Chloroplast biogenesis: Quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal Biochem 149:43-61.
Valvekens D., Van Montagu M., Van Lijsebettens M. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536-5540.
Virgin H. (1981) The physical state of protochlorophyll(ide) in plants. Annu Rev Plant Physiol 32:451-463.
Whyte B.J., Griffiths W.T. (1993) 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J 291:939-944.