2-Point correlation function of nanostructured materials via the grey-tone correlation function of electron tomograms: A three-dimensional structural analysis of ordered mesoporous silica
Gommes, Cédric; Friedrich, Heiner; De Jongh, Petra Eet al.
mesoporous materials; Electron tomography; Image analysis; Correlation analysis
Abstract :
[en] Electron tomography is a unique technique for imaging the microstructure of materials with a nanometer resolution. The signal to noise ratio of electron tomograms is, however, often too low for a reliable segmentation-based image analysis. We derive a general relation between the grey-tone correlation function of the tomograms and the 2-point correlation function of the morphology, which enables to analyze quantitatively the grey-tone correlation function with a morphological model of the material. The methodology is applied to SBA-15 ordered mesoporous silica. The three-dimensional grey-tone correlation function obtained from electron tomography is analyzed in terms of a hexagonal array of Gaussian independent pores. The model enables to relate the morphology obtained from the 2-point correlation function to macroscopic characterization data of the material, notably small-angle X-ray scattering and nitrogen adsorption.
Research Center/Unit :
Departement de Chimie Appliquée, ULiège
Disciplines :
Materials science & engineering
Author, co-author :
Gommes, Cédric ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Génie catalytique
Friedrich, Heiner; Universiteit Utrecht > Inorganic Cemistry and Catalysis
De Jongh, Petra E; Universiteit Utrecht > Inorganic Cemistry and Catalysis
De Jong, Krijn P; Universiteit Utrecht > Inorganic Cemistry and Catalysis
Language :
English
Title :
2-Point correlation function of nanostructured materials via the grey-tone correlation function of electron tomograms: A three-dimensional structural analysis of ordered mesoporous silica
Franck J. Principles of electron tomography. In: Frank J. (Ed). Electron tomography, methods for three-dimensional visualization of structures in the cell (2006), Springer, New York 1
Koster A.J., and Barcena M. Cryotomography: low-dose automated tomography of frozen-hydrated specimens. In: Frank J. (Ed). Electron tomography: methods for three-dimensional visualization of structures in the cell (2006), Springer, New York 113
Friedrich H., Sietsma J.R.A., de Jongh P.E., Verkleij A.J., and de Jong K.P. J Am Chem Soc 129 (2007) 10249
Coster M., and Chermant J.L. Précis d'analyse d'images (1989), Les Presses du CNRS, Paris
Soille P. Morphological image analysis. 2nd ed. (2007), Springer, Berlin
Gommes C.J., Pirard J.-P., and Blacher S. J Microsc 226 (2007) 156
Pinnamaneni B., Jeulin D., Daly C., Mory C., Tencé M., and Colliex C. Microsc Microanal Microstruct 2 (1991) 107
Press W., Teukolsky S., Vetterling W., and Flannery B. Numerical recipes in C: the art of scientific computing. 2nd ed. (1992), Academic Press, New York
Matheron G. Elements pour une Théorie des Milieux Poreux (1967), Paris, Masson
Matheron G. Random sets and integral geometry (1975), Wiley, New York
Ciccariello S. Phys Rev B 28 (1983) 4301
Ohser J., and Mücklich F. Statistical analysis of microstructures in materials science (2000), Wiley, Chichester
Tewari A., Gokhale A.M., Spowart J.E., and Miracle D.B. Acta Mater 52 (2004) 307
Fullwood D.T., Niezgoda S.R., and Kalidindi S.R. Acta Mater 56 (2008) 942
Greco A., Jeulin D., and Serra J. J Microsc 116 (1979) 199
Gommes C.J., and Roberts A.P. Phys Rev E 77 (2008) 041409
Rose C., and Smith M.D. The bivariate normal. Mathematical statistics with mathematica (2002), Springer, New York 216-219
Muinonen K., Nousiainen T., Fast P., Lumme K., and Peltoniemi J.I. J Quant Spectrosc Radiat Transfer 55 (1996) 577
Muinonen K., and Saarinen K. J Quant Spectrosc Radiat Transfer 64 (2000) 201
Hofmann T., Wallacher D., Huber P., Birringer R., Knorr K., Schreiber A., et al. Phys Rev B 72 (2005) 064122
Hudson S., Tanner D.A., Redington W., Magner E., Hodnett K., and Nakahara S. Phys Chem Chem Phys 8 (2006) 3467
Janssen A.H., Van Der Voort P., Koster A.J., and de Jong K.P. Chem Commun (2002) 1632
Che S., Lund K., Tatsumi T., Iijima S., Joo S.H., Ryoo R., et al. Angew Chem Int Ed 42 (2003) 2182