mass spectrometry; DNA; triplex; ligand; binding constant; fragmentation; noncovalent
Abstract :
[en] In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.
Research Center/Unit :
CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège Giga-Systems Biology and Chemical Biology - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Hurley L.H. DNA and Its Associated Processes as Targets for Cancer Therapy. Nat. Rev. Cancer 2 (2002) 188-200
Hélène C. The Antigene Strategy: Control of Gene Expression by Triplex-Forming Oligonucleotides. Anticancer Drug Des 6 (1991) 569-584
Opalinska J.B., and Gewirtz A.M. Nucleic Acid Therapeutics: Basic Principles and Recent Applications. Nature Rev. Drug. Discov 1 (2002) 503-514
Besch R., Giovannangeli C., and Degitz K. Triplex-Forming oligonucleotides-Sequence-Specific DNA Ligands as Tools for Gene Inhibition and for Modulation of DNA-Associated Functions. Current Drug Targets 5 (2004) 691-703
Felsenfeld G., Davis D.R., and Rich A. Formation of a Three-Stranded Polynucleotide Molecule. J. Am. Chem. Soc 79 (1957) 2023-2024
Marchand C., Bailly C., Nguyen C.H., Bisagni E., Garestier T., Helene C., and Waring M.J. Stabilization of Triple Helical DNA by a Benzopynidoquinoxaline Intercalator. Biochemistry 35 (1996) 5022-5032
Zain R., Marchand C., Sun J.S., Nguyen C.H., Bisagni E., Garestier T., and Helene C. Design of a Triple-Helix-Specific Cleaving Reagent. Chem. Biol 6 (1999) 771-777
Chaires J.B. Analysis and Interpretation of Ligand-DNA Binding Isotherms. Methods Enzymol 340 (2001) 3-23
Chaires J.B. Structural Selectivity of Drug-Nucleic Acid Interactions Probed by Competition Dialysis. DNA Binders and Related Subjects. Topics Curr. Chem 253 (2005) 33-53
Chaires J.B. Competition Dialysis: An Assay to Measure the Structural Selectivity of Drug-Nucleic Acid Interactions. Curr. Med. Chem. Anticancer Agents 5 (2005) 339-352
Piehler J., Brecht A., Gauglitz G., Zerlin M., Maul C., Thiericke R., and Grabley S. Label-Free Monitoring of DNA-Ligand Interactions. Anal. Biochem 249 (1997) 94-102
Myszka D.G., Jonsen M.D., and Graves B.J. Equilibrium Analysis of High Affinity Interactions using BIACORE. Anal. Biochem 265 (1998) 326-333
Freire E., Mayorge O.L., and Straume M. Isothermal titration calorimetry. Anal. Chem 950 (1990) A-959 A
Breslauer K.J., Freire E., and Straume M. Calorimetry: A tool for DNA and Ligand-DNA Studies. Methods Enzymol 211 (1992) 533-567
Gale D.C., Goodlett D.R., Light-Wahl K.J., and Smith R.D. Observation of Duplex DNA-Drug Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc 116 (1994) 6027-6028
Gale D.C., and Smith R.D. Characterization of Noncovalent Complexes Formed Between Minor Groove Binding Molecules and Duplex DNA by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom 6 (1995) 1154-1164
Pocsfalvi G., Di Landa G., Ferranti P., Ritieni A., Randazzo G., and Marorni A. Observation of Noncovalent Interactions Between Beauvericin and Oligonucleotides Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom 11 (1997) 265-272
Triolo A., Arcamone F.M., Raffaelli A., and Salvadori P. Noncovalent Complexes Between DNA-Binding Drugs and Double-Stranded Deoxyoligonucleotides: A Study by Ion-Spray Mass Spectrometry. J. Mass Spectrom 32 (1997) 1186-1194
Gabelica V., De Pauw E., and Rosu F. Interaction Between Antitumor Drugs and Double-Stranded DNA Studied by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom 34 (1999) 1328-1337
Kapur A., Beck J.L., and Sheil M.M. Observation of Daunomycin and Nogalamycin Complexes with Duplex DNA Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom 13 (1999) 2489-2497
Wan K.X., Shibue T., and Gross M.L. Noncovalent Complexes Between DNA-Binding Drugs and Double-Stranded Oligodeoxynucleotides: A Study by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc 122 (2000) 300-307
Reyzer M., Brodbelt J.S., Kerwin S.M., and Kumar D. Evaluation of Complexation of Metal-Mediated DNA-Binding Drugs to Oligonucleotides Via Electrospray Ionization Mass Spectrometry. Nucleic Acids Res 29 (2001) e103
Beck J., Colgrave M.L., Ralph S.F., and Sheil M.M. Electrospray Ionization Mass Spectrometry of Oligonucleotide Complexes with Drugs, Metals, and Proteins. Mass Spectrom. Rev 20 (2001) 61-87
Rosu F., Gabelica V., Houssier C., and De Pauw E. Determination of Affinity, Stoichiometry and Sequence Selectivity of Minor Groove Binder Complexes with Double-Stranded Oligodeoxynucleotides by Electrospray Ionization Mass Spectrometry. Nucleic Acids Res 30 (2002) e82
Guittat L., De Cian A., Rosu F., Gabelica V., De Pauw E., Delfourne E., and Mergny J.L. Ascididemin and Meridine Stabilize G-quadruplexes and Inhibit Telomerase In Vitro. Biochim. Biophys. Acta 1724 (2005) 375-384
Guittat L., Alberti P., Rosu F., Van Miert S., Thetiot E., Pieters L., Gabelica V., De Pauw E., Ottaviani A., Riou J.-F., and Mergny J.-L. Interactions of Cryptolepine and Neocryptolepine with Unusual DNA Structures. Biochimie 85 (2003) 535-547
Rosu F., De Pauw E., Guittat L., Alberti P., Lacroix L., Mailliet P., Riou J.-F., and Mergny J.-L. Selective Interaction of Ethidium Derivatives with Quadruplexes. An Equilibrium Dialysis and Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 42 (2003) 10361-10371
Carrasco C., Rosu F., Gabelica V., Houssier C., De Pauw E., Garbay-Jaureguiberry C., Roques B., Wilson W.D., Chaires J.B., Waring M.J., and Bailly C. Tight Binding of the Antitumor Drug Ditercalinium to Quadruplex DNA. Chem. Biochem 3 (2002) 100-106
Mazzitelli C.L., Brodbelt J.S., Kern J.T., Rodriguez M., and Kerwin S.M. Evaluation of Binding of Perylene Diimide and Benzannulated Perylene Diimide Ligands to DNA by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom 17 (2006) 593-604
Nguyen C.H., Lhoste J.M., Lavelle F., Bissery M.C., and Bisagni E. Synthesis and Antitumor-Activity of 1-[[(dialkylamino)alkyl]amino]-4-methyl-5h-pyrido[4,3-B]benzo[e])indole and 1-[[dialkylamino)alkyl]amino]-4-methyl-5h-pyrido[4,3-B]-benzo[g])indole-A New Class of Antineoplastic Agents. J. Med. Chem 33 (1990) 1519-1528
Escudé C., Nguyen C.H., Mergny J.-L., Sun J.-S., Bisagni E., Garestier T., and Hélène C. Selective Stabilization of DNA Triple Helices by Benzopyridoindole Derivatives. J. Am. Chem. Soc 117 (1995) 10212-10219
Pilch D.S., Waring M.J., Sun J.-S., Rougée M., Nguyen C.H., Bisagni E., Garestier T., and Hélène C. Characterization of a Triple Helix-Specific Ligand BePI (3-metoxy-7h-8-methyl-11-[(3′-amino)propylamino]-benzo[e]pyrido[4,3-b]indole) intercalates into both double-helical and triple-helical DNA. J. Mol. Biol 232 (1993) 926-946
Bailly C., Marchand C., Nguyen C.H., Bisagni E., Garestier T., Helene C., and Waring M.J. Localized Chemical-Reactivity in Double-Stranded DNA Associated with the Intercalative Binding of Benzo[E]Pyridoindole and Benzo[G]Pyridoindole Triple-Helix-Stabilizing Ligands. Eur. J. Biochem 232 (1995) 66-76
Mergny J.-L., Duval-Valentin G., Nguyen C.H., Perrouault L., Faucon B., Rougée M., Montenay-Garestier T., Bisagni E., and Hélène C. Triple Helix-Specific Ligands. Science 256 (1992) 1681-1684
Riou J.F., Fosse P., Nguyen C.H., Larsen A.K., Bissery M.C., Grondard L., Saucier J.M., Bisagni E., and Lavelle F. Intoplicine (Rp-60475) and Its Derivatives, a New Class of Antitumor Agents Inhibiting Both Topoisomerase-I and Topoisomerase-II Activities. Cancer Res 53 (1993) 5987-5993
Nguyen C.H., Fan E., Riou J.-F., Bissery M.-C., Vrignaud P., Lavelle F., and Bisagni E. Synthesis and Biological Evaluation of Amino-Substituted benzo[f]pyrido[4,3-b] and pyrido[3,4-b]quinoxalines: A New Class of Antineoplastic Agents. Anticancer Drug Des 10 (1995) 277-297
Marchand C., Bailly C., Nguyen C.H., Bisagni E., Garestier T., Hélène C., and Waring M.J. Stabilization of Triple Helical DNA by a Benzopyridoquinoxaline Intercalator. Biochemistry 35 (1996) 5022-5032
Pilch D.S., Martin M.-T., Nguyen C.H., Sun J.-S., Bisagni E., Garestier T., and Hélène C. Self-Association and DNA-Binding Properties of Two Triple Helix-Specific Ligands: Comparison of a Benzo[e]pyridoindole and a Benzo[g]pyridoindole. J. Am. Chem. Soc 115 (1993) 9942-9951
Nabiev I., Chourpa I., Riou J.F., Nguyen C.H., Lavelle F., and Manfait M. Molecular-Interactions of DNA Topoisomerase-I and Topoisomerase-II Inhibitor with DNA and Topoisomerases and in Ternary Complexes-Binding Modes and Biological Effects for Intoplicine Derivatives. Biochemistry 33 (1994) 9013-9023
Escudé C., Nguyen C.H., Kukreti S., Janin Y., Sun J.-S., Bisagni E., Garestier T., and Hélène C. Rational Design of a Triple Helix-Specific Intercalating Ligand. Proc. Natl. Acad. Sci. U.S.A 95 (1998) 3591-3596
Vékey K. Internal Energy Effects in Mass Spectrometry. J. Mass Spectrom 31 (1996) 445-463
Hase W.L. Some Recent Advances and Remaining Questions Regarding Unimolecular Rate Theory. Acc. Chem. Res 31 (1998) 659-665
Lifshitz C. Some Recent Aspects of Unimolecular Gas Phase Ion Chemistry. Chem. Soc. Rev 30 (2001) 186-192
Rosu F., Gabelica V., Houssier C., Colson P., and De Pauw E. Triplex and Quadruplex DNA Structures Studied by Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom 16 (2002) 1729-1736
Gabelica V., and De Pauw E. Comparison of the Collision-Induced Dissociation of Duplex DNA at Different Collision Regimes: Evidence for a Multistep Dissociation Mechanism. J. Am. Soc. Mass Spectrom 13 (2002) 91-98
Kuszewski J., Schwieters C., and Clore G.M. Improving the Accuracy of NMR Structures of DNA by Means of a Database Potential of Mean Force Describing Base-Base Positional Interactions. J. Am. Chem. Soc 123 (2001) 3903-3918
Cirilli M., Bachechi F., Ughetto G., Colonna F.P., and Capobianco M.L. Interactions Between Morpholinyl Anthracyclines and DNA-the Crystal-Structure of a Morpholino Doxorubicin Bound to D(CGTACG). J. Mol. Biol 230 (1993) 878-889
Frederick C.A., Williams L.D., Ughetto G., Van der Marel G.A., Van Boom J.H., Rich A., and Wang A.H. Structural Comparison of Anticancer Drug-DNA Complexes: Adriamycin and Daunomycin. Biochemistry 29 (1990) 2538-2549
Radhakrishnan I., and Patel D.J. Solution Structure of a Pyrimidine · Purine · Pyrimidine DNA Triplex Containing T · At, C+ · Gc, and G · Ta Triples. Structure 2 (1994) 17-32
Gabelica V., Galic N., Rosu F., Houssier C., and De Pauw E. Influence of Response Factors on Determining Equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom 38 (2003) 491-501
Rosu F., Pirotte S., De Pauw E., and Gabelica V. Positive and Negative Ion Mode ESI-MS and MS/MS for Studying Drug-DNA Complexes. Int. J. Mass Spectrom 253 (2006) 156-171
Bostock-Smith C.E., Harris S.A., Laughton C.A., and Searle M.S. Induced Fit DNA Recognition by a Minor Groove Binding Analogue of Hoechst 33258: Fluctuations in DNA A Tract Structure Investigated by NMR and Molecular Dynamics Simulations. Nucleic Acids Res 29 (2001) 693-702
Chaires J.B., Satyanaraana S., Suh D., Fokt I., Przewloka T., and Priebe W. Parsing the Free Energy of Anthracycline Antibiotic Binding to DNA. Biochemistry 35 (1996) 2047-2053
Harris S.A., Gavathiotis E., Searle M.S., Orozco M., and Laughton C.A. Cooperativity in Drug-DNA recognition: A Molecular Dynamics Study. J. Am. Chem. Soc 123 (2001) 12658-12663
Gao Q., Williams L.D., Egli M., Rabinovitch D., Chen S.-L., Quigley G.J., and Rich A. Drug-Induced DNA Repair: X-ray Structure of a DNA-Ditercalinium Complex. Proc. Natl. Acad. Sci. U.S.A 88 (1991) 2422-2426
Jin E., Katritch V., Olson W.K., Kharatisvili M., Abagyan R., and Plich D.S. Aminoglycoside Binding in the Major Groove of Duplex RNA: The Thermodynamic and Electrostatic Forces that Govern Recognition. J. Mol. Biol (2000) 95-110
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.