mass spectrometry; DNA; photodetachment; UV; visible; spectroscopy; fragmentation; noncovalent
Abstract :
[en] Double stranded DNA multiply charged anions coupled to chromophores were subjected to UV-Vis photoactivation. in a quadrupole ion trap mass spectrometer. The chromophores included noncovalently bound minor groove binders (activated in the near UV), noncovalently bound intercalators (activated with visible light), and covalently linked fluorophores and quenchers (activated at their maximum absorption wavelength). We found that the activation of only chromophores having long fluorescence lifetimes did result in efficient electron photodetachment from the DNA complexes. In the case of ethidium-dsDNA complex excited at 500 nm, photodetachment is a multiphoton process. The MS3 fragmentation of radicals produced by photodetachment at lambda = 260 nm (DNA excitation) and by photodetachment at lambda > 300 nm (chromophore excitation) were compared. The radicals keep no memory of the way they were produced. A weakly bound noncovalent ligand (m-amsacrine) allowed probing experimentally that a fraction of the electronic internal energy was converted into vibrational internal energy. This fragmentation channel was used to demonstrate that excitation of the quencher DABSYL resulted in internal conversion, unlike the fluorophore 6-FAM. Altogether, photodetachment of the DNA complexes upon chromophore excitation can be interpreted by the following mechanism: (1) ligands with sufficiently long excited-state lifetime undergo resonant two-photon excitation to reach the level of the DNA excited states, then (2) the excited-state must be coupled to the DNA excited states for photodetachment to occur. Our experiments also pave the way towards photodissociation probes of biomolecule conformation in the gas-phase by Forster resonance energy transfer (FRET).
Disciplines :
Physics Chemistry
Author, co-author :
Gabelica, Valérie ; Université de Liège - ULiège > Département de Chimie (Sciences) > Chimie physique, spectrométrie de masse
Rosu, Frédéric ; Université de Liège - ULiège > Département de Chimie (Sciences) > Chimie physique, spectrométrie de masse
De Pauw, Edwin ; Université de Liège - ULiège > Département de Chimie (Sciences) > Chimie physique, spectrométrie de masse
Antoine, Rodolphe; Université Lyon 1 et CNRS > Laboratoire de Spectrométrie Ionique et Moléculaire - LASIM
Tabarin, Thibault; Université Lyon 1 et CNRS > Laboratoire de Spectrométrie Ionique et Moléculaire - LASIM
Broyer, Michel; Université Lyon 1 et CNRS > Laboratoire de Spectrométrie Ionique et Moléculaire - LASIM
Dugourd, Philippe; Université Lyon 1 et CNRS > Laboratoire de Spectrométrie Ionique et Moléculaire - LASIM
Language :
English
Title :
Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores
Publication date :
2007
Journal title :
Journal of the American Society for Mass Spectrometry
ISSN :
1044-0305
eISSN :
1879-1123
Publisher :
Elsevier Science, New York, United States - New York
Sleno L., and Volmer D.A. Ion Activation Methods for Tandem Mass Spectrometry. J. Mass Spectrom 39 (2004) 1091-1112
Wu J., and McLuckey S.A. Gas-Phase Fragmentation of Oligonucleotide Ions. Int. J. Mass Spectrom 237 (2004) 197-241
Mo J.J., and Hakansson K. Characterization of Nucleic Acid Higher Order Structure by High-Resolution Tandem Mass Spectrometry. Anal. Bioanal. Chem 386 (2006) 675-681
Yang J., and Hakansson K. Fragmentation of Oligoribonucleotides from Gas-Phase Ion-Electron Reactions. J. Am. Soc. Mass Spectrom 17 (2006) 1369-1375
Yang J., Mo J.J., Adamson J.T., and Hakansson K. Characterization of Oligodeoxynucleotides by Electron Detachment Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem 77 (2005) 1876-1882
Wilson J.J., and Brodbelt J.S. Infrared Multiphoton Dissociation of Duplex DNA/Drug Complexes in a Quadrupole Ion Trap. Anal. Chem 79 (2007) 2067-2077
Gabelica V., Tabarin T., Antoine R., Rosu F., Compagnon I., Broyer M., De Pauw E., and Dugourd P. Electron Photodetachment Dissociation of DNA Polyanions in a Quadrupole Ion Trap Mass Spectrometer. Anal. Chem 78 (2006) 6564-6572
Gabelica V., Rosu F., Tabarin T., Kinet C., Antoine R., Broyer M., De Pauw E., and Dugourd P. Base-Dependent Electron Photodetachment from Negatively Charged DNA Strands Upon 260-nm Laser Irradiation. J. Am. Chem. Soc 129 (2007) 4706-4713
Antoine R., Joly L., Tabarin T., Broyer M., Dugourd P., and Lemoine J. Photoinduced Formation of Radical Anion Peptides. Electron Photodetachment Dissociation Experiments. Rapid Commun. Mass Spectrom 21 (2007) 265-268
Danell A.S., and Parks J.H. Fraying and Electron Autodetachment Dynamics of Trapped Gas-Phase Oligonucleotides. J. Am. Soc. Mass Spectrom 14 (2003) 1330-1339
Anusiewicz I., Berdys-Kochanska J., Czaplewski C., Sobczyk M., Daranowski E.M., Skurski P., and Simons J. Charge Loss in Gas-Phase Multiply Negatively Charged Oligonucleotides. J. Phys. Chem. A 109 (2005) 240-249
Simons J. Anions. In: Armentrout P.B. (Ed). Encyclopedia of Mass Spectrometry, Vol I: Theory and Ion Chemistry (2003), Elsevier, Amsterdam 55-68
Yang X., Wang X.B., Vorpagel E.R., and Wang L.S. Direct Experimental Observation of the Low Ionization Potentials of Guanine in Free Oligonucleotides by Using Photoelectron Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 17588-17592
Rubio M., Roca-Sanjuan D., Merchan M., and Serrano-Andres L. Determination of the Lowest Energy Oxidation Site in Nucleotides: 2′-Deoxythymidine 5′-Monophosphate Anion. J. Phys. Chem. B 110 (2006) 10234-10235
Zakjevskii V.V., King S.J., Dolgounitcheva O., Zakrzewski V.G., and Ortiz J.V. Base and Phosphate Electron Detachment Energies of Deoxyribonucleotide anions. J. Am. Chem. Soc 128 (2006) 13350-13351
Crecca C.R., and Roitberg A.E. Theoretical Study of the Isomerization Mechanism of Azobenzene and Disubstituted Azobenzene Derivatives. J. Phys. Chem. A 110 (2006) 8188-8203
Botan V., Backus E.H., Pfister R., Moretto A., Crisma M., Toniolo C., Nguyen P.H., Stock G., and Hamm P. Energy Transport in Peptide Helices. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 12749-12754
Lorquet J.C. Whither the Statistical Theory of Mass Spectra. Mass Spectrom. Rev 13 (1994) 233-257
Boyall D., and Reid K.L. Modern Studies of Intramolecular Vibrational Energy Redistribution. Chem. Soc. Rev 26 (1997) 223-232
Nordholm S., and Bäck A. On the Role of Nonergodicity and Slow IVR in Unimolecular Reaction Rate Theory-A Review and View. Phys. Chem. Chem. Phys 3 (2001) 2289-2295
Hu Y.J., Hadas B., Davidovitz M., Balta B., and Lifshitz C. Does IVR Take Place Prior to Peptide Ion Dissociation?. J. Phys. Chem. A 107 (2003) 6507-6514
Gruebele M., and Wolynes P.G. Vibrational Energy Flow and Chemical Reactions. Acc. Chem. Res 37 (2004) 261-267
Schlag E.W., Selzle H.L., Schanen P., Weinkauf R., and Levine R.D. Dissociation Kinetics of Peptide Ions. J. Phys. Chem. A 110 (2006) 8497-8500
Gregoire G., Kang H., Dedonder-Lardeux C., Jouvet C., Desfrancois C., Onidas D., Lepere V., and Fayeton J.A. Statistical Versus Nonstatistical Deactivation Pathways in the UV Photofragmentation of Protonated Tryptophan-Leucine Dipeptide. Phys. Chem. Chem. Phys 8 (2006) 122-128
Talbot F.O., Tabarin T., Antoine R., Broyer M., and Dugourd P. Photodissociation Spectroscopy of Trapped Protonated Tryptophan. J. Chem. Phys 122 (2005) 074310
Cosa G., Focsaneanu K.S., Mclean J.R.N., McNamee J.P., and Scaiano J.C. Photophysical Properties of Fluorescent DNA-Dyes Bound to Single- and Double-Stranded DNA in Aqueous Buffered Solution. Photochem. Photobiol 73 (2001) 585-599
Gorner H. Direct and Sensitized Photoprocesses of Bis-Benzimidazole Dyes and the Effects of Surfactants and DNA. Photochem. Photobiol 73 (2001) 339-348
Adhikary A., Buschmann V., Müller C., and Sauer M. Ensemble and Single Molecule Fluorescence Spectroscopic Study of the Binding Modes of the Bis-Benzimidazole Derivative Hoechst 33258 with DNA. Nucleic Acids Res 31 (2003) 2178-2186
Ren J., and Chaires J.B. Sequence and Structural Selectivity of Nucleic Acid Binding Ligands. Biochemistry (1999) 16067-16075
Wartell R.M., Larson J.E., and Wells R.D. Netropsin. A Specific Probe for A-T Regions of Duplex Deoxyribonucleic Acid. J. Biol. Chem 249 (1974) 6719-6731
Pilch D.S., Kirolos M.A., Liu X., Plum G.E., and Breslauer K.J. Berenil [1,3-Bis(4′-Amidinophenyl)Triazene] Binding to DNA Duplexes and to a RNA Duplex: Evidence for Both Intercalative and Minor Groove Binding Properties. Biochemistry 34 (1995) 9962-9976
Doglia S., Graslund A., and Ehrenberg A. Binding of Ethidium Bromide to Selfcomplementary Deoxydinucleotides. Eur. J. Biochem 133 (1983) 179-184
Htun T. A Negative Deviation from Stern-Volmer Equation in Fluorescence Quenching. J. Fluoresc 14 (2004) 217-222
Sturgeon R.J., and Schulman S.G. Electronic Absorption Spectra and Proteolytic Equilibria of Doxorubicin: Direct Spectrophotometric Determination of Microconstants. J. Pharm. Sci 66 (1977) 958-961
Chaires J.B. Equilibrium Studies on the Interaction of Daunomycin with Deoxypolynucleotides. Biochemistry 22 (1983) 4204-4211
The Handbook - A Guide to Fluorescent Probes and Labeling Technologies. Invitrogen (2006). http://probes.invitrogen.com/handbook/ http://probes.invitrogen.com/handbook/
Marras S.A.E., Kramer F.R., and Tyagi S. Efficiencies of Fluorescence Resonance Energy Transfer and Contact-Mediated Quenching in Oligonucleotide probes. Nucleic Acids Res 30 (2002) e122
Velapoldi R.A., and Tonnesen H.H. Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral region. J. Fluoresc 14 (2004) 465-472
Magde D., Wong R., and Seybold P.G. Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields. Photochem. Photobiol 75 (2002) 327-334
Trotta E., D'Ambrosio E., Ravagnan G., and Paci M. Evidence for DAPI Intercalation in CG Sites of DNA Oligomer [d(CGACGTCG)]2: A 1H NMR Study. Nucleic Acids Res 23 (1995) 1333-1340
Colson P., Houssier C., and Bailly C. Use of Electric Linear Dichroism and Competition Experiments with Intercalating Drugs to Investigate the Mode of Binding of Hoechst 33258, Berenil, and DAPI to GC Sequences. J. Biomol. Struc. Dyn 13 (1995) 351-365
Rosu F., Pirotte S., De Pauw E., and Gabelica V. Positive and Negative Ion Mode ESI-MS and MS/MS for Studying Drug-DNA Complexes. Int. J. Mass Spectrom 253 (2006) 156-171
Okumura Y., Yeh L.I., Myers J.D., and Lee Y.T. Infrared Spectra of the Cluster ions H7O3+·H2 and H9O4+·H2. J. Chem. Phys 85 (1986) 2328-2329
Oomens J., Polfer N., Moore D.T., van der Meer L., Marshall A.G., Eyler J.R., Meijer G., and von Helden G. Charge-State Resolved Mid-Infrared Spectroscopy of a Gas-Phase Protein. Phys. Chem. Chem. Phys 7 (2005) 1345-1348
Danell A.S., and Parks J.H. FRET Measurements of Trapped Oligonucleotide Duplexes. Int. J. Mass Spectrom 229 (2003) 35-45
Norman D.G., Grainger R.J., Uhrin D., and Lilley D.M.J. Location of Cyanine-3 on Double-Stranded DNA: Importance for Fluorescence Resonance Energy Transfer Studies. Biochemistry 39 (2000) 6317-6324
Reha D., Kabelac M., Sponer J., Sponer J.E., Elsner M., Suhai S., and Hobza P. Intercalators. 1. Nature of Stacking Interactions Between Intercalators (Ethidium, Daunomycin, Ellipticine, and 4′,6-Diaminide-2-Phenylindole) and DNA Base Pairs. Ab Initio Quantum Chemical Density Functional Theory and Empirical Potential Study. J. Am. Chem. Soc 124 (2002) 3366-3376
O'Neill M.A., and Barton J.K. Sequence-Dependent DNA Dynamics: The Regulator of DNA-Mediated Charge Transport. In: Wagenknecht H.A. (Ed). Charge Transfer in DNA: From Mechanisms to Application (2005), Wiley-VCH, Weinheim 27-75
Kelley S.O., Holmlin R.E., Stemp E.D.A., and Barton J.K. Photoinduced Electron Transfer in Ethidium-Modified DNA Duplexes: Dependence on Distance and Base Stacking. J. Am. Chem. Soc 119 (1997) 9861-9870
Kelley S.O., and Barton J.K. DNA-Mediated Electron Transfer from a Modified Base to Ethidium: π-Stacking as a Modulator of Reactivity. Chem. Biol 5 (1998) 413-425
Bossio R.E., Hudgins R.R., and Marshall A.G. Gas-Phase Photochemistry Can Distinguish Different Conformations of Unhydrated Photoaffinity-Labeled Peptide Ions. J. Phys. Chem. B 107 (2003) 3284-3289
Förster T. Energiewanderung und Fluoreszenz. Naturwissenschaften 6 (1946) 166-175
Clegg R.M. Fluorescence Resonance Energy Transfer and Nucleic Acids. Methods Enzymol 211 (1992) 353-388
Khoury J.T., Rodriguez-Cruz S.E., and Parks J.H. Pulsed Fluorescence Measurements of Trapped Molecular Ions with Zero Background Detection. J. Am. Soc. Mass Spectrom 13 (2002) 696-708
Friedrich J., Fu J.M., Hendrickson C.L., Marshall A.G., and Wang Y.S. Time Resolved Laser-Induced Fluorescence of Electrosprayed Ions Confined in a Linear Quadrupole Trap. Rev. Sci. Instrum 75 (2004) 4511-4515
Frankevich V., Guan X.W., Dashtiev M., and Zenobi R. Laser-Induced Fluorescence of Trapped Gas-Phase Molecular Ions Generated by Internal-Source Matrix-Assisted Laser Desorption/Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Eur. J. Mass Spectrom 11 (2005) 475-482
Iavarone A.T., Duft D., and Parks J.H. Shedding Light on Biomolecule Conformational Dynamics Using Fluorescence Measurements of Trapped Ions. J. Phys. Chem. A 110 (2006) 12714-12727
Dashtiev M., Azov V., Frankevich V., Scharfenberg L., and Zenobi R. Clear Evidence of Fluorescence Resonance Energy Transfer in Gas-Phase Ions. J. Am. Soc. Mass Spectrom 16 (2005) 1481-1487
Antony T., and Subramanian V. Molecular Beacons: Nucleic Acid Hybridization and Emerging Applications. J. Biomol. Struct. Dyn 19 (2001) 497-504
Fang X., Li J.J., Perlette J., Tan W., and Wang K. Molecular Beacons. Novel Fluorescent Probes. Anal. Chem (2000) 747 A-753 A