[en] Radial glial cells are characterized, besides their astroglial properties, by long radial processes extending from the ventricular zone to the pial surface, a crucial feature for the radial migration of neurons. The molecular signals that regulate this characteristic morphology, however, are largely unknown. We show an important role of the secreted molecule reelin for the establishment of radial glia processes. We describe a significant reduction in ventricular zone cells with long radial processes in the absence of reelin in the cortex of reeler mutant mice. These defects were correlated to a decrease in the content of brain lipid-binding protein (Blbp) and were detected exclusively in the cerebral cortex, but not in the basal ganglia of reeler mice. Conversely, reelin addition in vitro increased the Blbp content and process extension of radial glia from the cortex, but not the basal ganglia. Isolation of radial glia by fluorescent-activated cell sorting showed that these effects are due to direct signaling of reelin to radial glial cells. We could further demonstrate that this signaling requires Dab1, as the increase in Blbp upon reelin addition failed to occur in Dab1(-/-) mice. Taken together, these results unravel a novel role of reelin signaling to radial glial cells that is crucial for the regulation of their Blbp content and characteristic morphology in a region-specific manner.
Hartfuss, Eva; Max-Planck-Institute of Neurobiology > Neuronal Specification
Forster, Eckart; University of Freiburg > Institute of Anatomy
Bock, Hans H.; UT Southwestern > Department of molecular genetics
Hack, Michael A.; Max-Planck-Institute of Neurobiology > Neuronal Specification
Leprince, Pierre ; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Luque, Juan M; Instituto de Neurosciencias UMH/CSIC
Herz, Joachim; UT Southwestern > Department of Molecular Genetics
Frotscher, Michael; University of Freiburg > Institute of Anatomy
Gotz, Magdalena; Max-Planck-Institute of Neurobiology > Neuronal specification
Language :
English
Title :
Reelin signaling directly affects radial glia morphology and biochemical maturation
Publication date :
October 2003
Journal title :
Development
ISSN :
0950-1991
eISSN :
1477-9129
Publisher :
Company Of Biologists Ltd, Cambridge, United Kingdom
Volume :
130
Issue :
19
Pages :
4597-4609
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FMRE - Fondation Médicale Reine Elisabeth DFG - Deutsche Forschungsgemeinschaft NIH - National Institutes of Health AvH - Alexander von Humboldt-Stiftung Alzheimer's Association MPG - Max-Planck-Gesellschaft zur Förderung der Wissenschaften Generalitat Valenciana
Anton, E. S., Marchionni, M. A., Lee, K. F. and Rakic, P. (1997). Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124, 3501-3510.
Arnaud, L., Ballif, B. A., Forster, E. and Cooper, J. A. (2003). Fyn tyrosine kinase is a critical regulator of Disabled-1 during brain development. Curr. Biol. 13, 9-17.
Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T. and Herz, J. (2002). Reelin-mediated signaling locally regulates PKB/Akt and GSK-3β. J. Biol. Chem. 277, 49958-49964.
Benhayon, D., Magdaleno, S. and Curran, T. (2003). Binding of purified reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of disabled-1. Mol. Brain Res. 112, 33-45.
Benjelloun-Touimi, S., Jacque, C. M., Derer, P., de Vitry, F., Maunoury, R. and Dupouey, P. (1985). Evidence that mouse astrocytes may be derived from the radial glia. An immunohistochemical study of the cerebellum in the normal and reeler mouse. J. Neuroimmunol. 9, 87-97.
Bignami, A. and Dahl, D. (1974). Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252, 55-56.
Bock, H. H. and Herz, J. (2003). Reelin activates Src family tyrosine kinases in neurons. Curr. Biol. 13, 18-26.
Campbell, K. and Götz, M. (2002). Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci. 25, 235-238.
Caric, D., Gooday, D., Hill, R. E., McConnell, S. K. and Price, D. J. (1997). Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124, 5087-5096.
Caviness, V. S., Jr, Crandall, J. E. and Edwards, M. A. (1988). The reeler malformation - implications for neocortical histogenesis. In Cerebral Cortex (ed. Peters, A. and Jones, E. G.), pp. 59-89. New York: Plenum Press.
Caviness, V. S., Jr and Rakic, P. (1978). Mechanisms of cortical development: a view from mutations in mice. Annu. Rev. Neurosci. 1, 297-326.
Curran, T. and D'Arcangelo, G. (1998). Role of reelin in the control of brain development. Brain Res. Rev. 26, 285-294.
D'Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I. and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719-723.
D'Arcangelo, G., Miao, G. G. and Curran, T. (1996). Detection of the reelin breakpoint in reeler mice. Mol. Brain Res. 39, 234-236.
D'Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K. and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23-31.
D'Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M. and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24, 471-479.
de Bergeyck, V., Naerhuyzen, B., Goffinet, A. M. and Lambert de Rouvroit, C. (1998). A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. J. Neurosci. Methods 82, 17-24.
Estivill-Torrus, G., Pearson, H., van, H., V, Price, D. J. and Rashbass, P. (2002). Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129, 455-466.
Feng, L., Hatten, M. E. and Heintz, N. (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895-908.
Förster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Müller, U. and Frotscher, M. (2002). Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 13178-13183.
Frotscher, M., Haas, C. A. and Förster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13, 634-640.
Fukaya, M., Yamada, K., Nagashima, M., Tanaka, K. and Watanabe, M. (1999). Down-regulated expression of glutamate transporter GLAST in Purkinje cell-associated astrocytes of reeler and weaver mutant cerebella. Neurosci. Res. 34, 165-175.
Gadisseux, J. F. and Evrard, P. (1985). Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Dev. Neurosci. 7, 12-32.
Ghandour, M. S., Derer, P., Labourdette, G., Delaunoy, J. P. and Langley, O. K. (1981). Glial cell markers in the reeler mutant mouse: a biochemical and immunohistological study. J. Neurochem. 36, 195-200.
Goldowitz, D., Cushing, R. C., Laywell, E., D'Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D. and Curran, T. (1997). Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17, 8767-8777.
Gonzalez, J. L., Russo, C. J., Goldowitz, D., Sweet, H. O., Davisson, M. T. and Walsh, C. A. (1997). Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J. Neurosci. 17, 9204-9211.
Götz, M., Stoykova, A. and Gross, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031-1044.
Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C. and Müller, U. (2001). Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367-379.
Halfter, W., Dong, S., Yip, Y. P., Willem, M. and Mayer, U. (2002). A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22, 6029-6040.
Hammond, V., Howell, B., Godinho, L. and Tan, S. S. (2001). Disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J. Neurosci. 21, 8798-8808.
Hartfuss, E., Galli, R., Heins, N. and Götz, M. (2001). Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15-30.
Hasling, T. A., Gierdalski, M., Jablonska, B. and Juliano, S. L. (2003). A radialization factor in normal cortical plate restores disorganized radial glia and disrupted migration in a model of cortical dysplasia. Eur. J. Neurosci. 17, 467-480.
Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K. L., Hack, M. A., Chapouton, P., Barde, Y. A. and Götz, M. (2002). Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308-315.
Herz, J. and Bock, H. H. (2002). Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71, 405-434.
Hevner, R. F., Neogi, T., Englund, C., Daza, R. A. and Fink, A. (2003). Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Dev. Brain Res. 141, 39-53.
Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A. and Herz, J. (1999). Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481-489.
Howell, B. W., Hawkes, R., Soriano, P. and Cooper, J. A. (1997). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733-737.
Howell, B. W., Herrick, T. M. and Cooper, J. A. (1999). Reelin-induced tryosine phosphorylation of Disabled 1 during neuronal positioning. Genes Dev. 13, 643-648.
Hunter, K. E. and Hatten, M. E. (1995). Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc. Natl. Acad. Sci. USA 92, 2061-2065.
Hunter-Schaedle, K. E. (1997). Radial glial cell development and transformation are disturbed in reeler forebrain. J. Neurobiol. 33, 459-472.
Huttner, W. B. and Brand, M. (1997). Asymmetric division and polarity of neuroepithelial cells. Curr. Opin. Neurobiol. 7, 29-39.
Keshvara, L., Benhayon, D., Magdaleno, S. and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled-1. J. Biol. Chem. 276, 16008-16014.
Kriegstein, A. and Götz, M. (2003). Radial glia diversity: a matter of cell fate. Glia 43, 37-43.
Kurtz, A., Zimmer, A., Schnutgen, F., Bruning, G., Spener, F. and Muller, T. (1994). The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637-2649.
Lambert de Rouvroit, C. and Goffinet, A. M. (1998). The reeler mouse as a model of brain development. Adv. Anat. Embryol. Cell Biol. 150, 1-106.
Luque, J. M., Morante-Oria, J. and Fairen, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Dev. Brain Res. 140, 195-203.
Magdaleno, S., Keshvara, L. and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33, 573-586.
Malatesta, P., Hartfuss, E. and Götz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253-5263.
Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F. and Götz, M. (2003). Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751-764.
Misson, J. P., Edwards, M. A., Yamamoto, M. and Caviness, V. S., Jr (1988). Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res. 466, 183-190.
Miyata, T., Kawaguchi, A., Okano, H. and Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727-741.
Morest, D. K. (1970). A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwickl. Gesch. 130, 265-305.
Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. and Pearlman, A. L. (2001). Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143-150.
Nieto, M., Schuurmans, C., Britz, O. and Guillemot, F. (2001). Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401-413.
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714-720.
Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K. and Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161-3173.
Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U. K., Kirchhoff, F. and Kettenmann, H. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72-86.
Phelps, P. E., Rich, R., Dupuy-Davies, S., Rios, Y. and Wong, T. (2002). Evidence for a cell-specific action of reelin in the spinal cord. Dev. Biol. 244, 180-198.
Pinto-Lord, M. C., Evrard, P. and Caviness, V. S., Jr (1982). Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain Res. 256, 379-393.
Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61-83.
Rice, D. S., Sheldon, M., D'Arcangelo, G., Nakajima, K., Goldowitz, D. and Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719-3729.
Rio, C., Rieff, H. I., Qi, P., Khurana, T. S. and Corfas, G. (1997). Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39-50.
Sauer, F. C. (1935). Mitosis in the neural tube. J. Comp. Neurol. 62, 377-405.
Sheldon, M., Rice, D. S., D'Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D. and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730-733.
Shibata, T., Yamada, K., Watanabe, M., Ikenaka, K., Wada, K., Tanaka, K. and Inoue, Y. (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212-9219.
Soriano, E., Alvarado-Mallart, R. M., Dumesnil, N., del Rio, J. A. and Sotelo, C. (1997). Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron 18, 563-577.
Stockinger, W., Hengstschlager-Ottnad, S., Novak, S., Matus, A., Höttinger, M., Bauer, J., Lassmann, H., Schneider, W. J. and Nimpf, J. (1998). The low densitiy lipoprotein receptor gene family. Differential expression of two alpha2-macroglobulin receptors in the brain. J. Biol. Chem. 273, 32213-32221.
Stoykova, A., Hatano, O., Gruss, P. and Götz, M. (2003). Increase of reelin-positive cells in the marginal zone of Pax6-mutant mouse cortex. Cereb. Cortex 13, 560-571.
Super, H., del Rio, J. A., Martinez, A., Perez-Sust, P. and Soriano, E. (2000). Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10, 602-613.
Super, H. and Uylings, H. B. (2001). The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb. Cortex 11, 1101-1109.
Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. and Davisson, M. T. (1996). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798-802.
Tamamaki, N., Nakamura, K., Okamoto, K. and Kaneko, T. (2001). Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51-60.
Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A. and Herz, J. (1999). Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689-701.
Tucker, K. L., Meyer, M. and Barde, Y. A. (2001). Neurotrophins are required for nerve growth during development. Nat. Neurosci. 4, 29-37.
Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert, D. R., Russo, C. J., Chun, S. C., Jr, Goffinet, A. M. and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239-249.
Weiss, K. H., Johanssen, C., Saum, B., Frotscher, M. and Förster, E. (2003). Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice and ApoER2/VLDLR deficient mice. J. Comp. Neurol. 460, 56-65.
Weissman, T., Noctor, S. C., Clinton, B. K., Honig, L. S. and Kriegstein, A. R. (2003). Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb. Cortex 13, 550-559.
Yip, J. W., Yip, Y. P., Nakajima, K. and Capriotti, C. (2000). Reelin controls position of autonomic neurons in the spinal cord. Proc. Natl. Acad. Sci. USA 97, 8612-8616.
Yoneshima, H., Nagata, E., Matsumoto, M., Yamada, M., Nakajima, K., Miyata, T., Ogawa, M. and Mikoshiba, K. (1997). A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci. Res. 29, 217-223.
Zhuo, L., Sun, B., Zhang, C. L., Fine, A., Chin, S. Y. and Messing, A. (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36-42.