Groundwater modelling; conceptual uncertainty; GLUE method; uncertainty estimation; conceptual model uncertainty; Bayesian model averaging
Abstract :
[en] Uncertainty assessments in groundwater modeling applications typically attribute all sources of uncertainty to errors in parameters and inputs, neglecting what may be the primary source of uncertainty, namely, errors in the conceptualization of the system.Confining the set of plausible system representations to a single model leads to underdispersive and prone-to-bias predictions. In this work, we present a general and flexible approach that combines generalized likelihood uncertainty estimation (GLUE) and Bayesian model averaging (BMA) to assess uncertainty in model predictions that arise from errors in model structure, inputs, and parameters. In a prior analysis, a set of plausible models is selected, and the joint prior input and parameter space is sampled to form potential simulators of the system. For each model, the likelihood measures of acceptable simulators, assigned to thembased on their ability to reproduce observed systembehavior, are integrated over the joint input and parameter space to obtain the integrated model likelihood. The latter is used to weight the predictions of the respective model in the BMA ensemble predictions. For illustrative purposes, we applied the methodology to a three-dimensional hypothetical setup. Results showed that predictions of groundwater budget terms varied considerably among competing models; despite this, a set of 16 head observations used for conditioning did not allow differentiating between the models. BMA provided average predictions that were more conservative than individual predictions obtained for individual models. Conceptual model uncertainty contributed up to 30% of the total uncertainty. The results clearly indicate the need to consider alternative conceptualizations to account for model uncertainty.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Rojas, Rodrigo; Katholieke Universiteit Leuven - KUL > Department of Earth and Environmental Sciences > Applied Geology and Mineralogy
Feyen, Luc; DG Joint Research Centre, European Commission, Ispra > Institute for Environment and Sustainability > Land Management and Natural Hazards Unit
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging
Publication date :
2008
Journal title :
Water Resources Research
ISSN :
0043-1397
eISSN :
1944-7973
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Abrahart, R., and L. See (2002), Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6(4), 655-670.
Ajami, N., Q. Duan, X. Gao, and S. Sorooshian (2005), Multi-model combination techniques for hydrologic forecasting: Application to distributed model intercomparison project results, J. Hydrometeorol., 7(4), 755-768, doi:10.1175/JHM519.1.
Akaike, H. (1974), A new look at the statistical model identification, IEEE Trans. Autom. Control., 19, 716-723.
Bernardo, J., and A. Smith (2000), Bayesian Theory, 608 pp., John Wiley, Chichester, U.K.
Beven, K. (1993), Prophecy, reality and uncertainty in distributed hydrological modeling, Adv. Water Resour., 16(1), 41-51.
Beven, K. (2005), On the concept of model structural error, Water Sci. Technol., 52(6), 167-175.
Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320(1-2), 18-36, doi:10.1016/j.jhydrol.2005.07.007.
Beven, K., and A. Binley (1992), The future of distributed models - Model calibration and uncertainty prediction, Hydrol. Processes, 6(3), 279-283, doi:10.1002/hyp.3360060305.
Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249(1-4), 11-29, doi:10.1016/S0022-1694(01)00421-8.
Beven, K., P. Smith, and J. Freer (2007), Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todino, J. Hydrol., 338(3-4), 315-318, doi:10.1016/j.jhydrol.2007.02.023.
Beven, K., P. Smith, and J. Freer (2008), So just why would a modeler choose to be incoherent?, J. Hydrol., 354(1-4), 15-32, doi:10.1016/j.jhydrol.2008.02.007.
Binley, A., and K. Beven (2003), Vadose zone flow model uncertainty as conditioned on geophysical data, Ground Water, 41(2), 119-127, doi:10.1111/j.1745-6584.2003.tb02576.x.
Bredehoeft, J. (2003), From models performance assessment: The conceptualization problem, Ground Water, 41(5), 571-577, doi:10.1111/j.1745-6584.2003.tb02395.x.
Bredehoeft, J. (2005), The conceptualization model problem - Surprise, Hydrogeol. J., 13(1), 37-46, doi:10.1007/s10040-004-0430-5.
Burnham, K., and D. Anderson (1998), Model Selection and Inference. A Practical Information-Theoretic Approach, 353 pp., Springer-Verlag, New York.
Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. Slooten (2005), Inverse problem in hydrogeology, Hydrogeol. J., 13(1), 206-222, doi:10.1007/s10040-004-0404-7.
Deutsch, C., and A. Journel (1998), GSLIB Geostatistical Software Library and User's Guide, 2nd ed., Oxford Univ. Press, New York.
Draper, D. (1995), Assessment and propagation of model uncertainty, J. R. Stat. Soc., B, 57(1), 45-97.
Feyen, L., K. Beven, F. DeSmedt, and J. Freer (2001), Stochastic capture zone delineation within the GLUE-methodology: Conditioning on head observations, Water Resour. Res., 37(3), 625-638.
Feyen, L., P. Ribeiro, F. De Smedt, and P. Diggle (2002), Bayesian methodology to stochastic capture zone determination: Conditioning on transmissivity measurements, Water Resour. Res., 38(9), 1164, doi:10.1029/2001WR000950.
Freer, J., and K. Beven (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 32(1), 2161-2173.
Gelman, A., J. Carlin, H. Stern, and D. Rubin (2004), Bayesian Data Analysis, 2nd ed., CRC Press, New York.
Georgakakos, K., D. Seo, H. Gupta, J. Schaake, and M. Butts (2004), Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298(1-4), 222-241, doi:10.1016/j. jhydrol.2004.03.037.
George, E. (1999), Comment on "Bayesian model averaging: A tutorial", Stat. Sci., 14(4), 409-412.
Gilks, W., S. Richardson, and D. Spiegelhalter (1995), Markov Chain Monte Carlo in Practice, 512 pp., CRC Press, Boca Raton, Fla.
Harbaugh, A., E. Banta, M. Hill, and M. McDonald (2000), MODFLOW-2000, U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, U.S. Geol. Surv. Open File Rep., 00-92, 130 pp.
Hoeting, J., D. Madigan, A. Raftery, and C. Volinsky (1999), Bayesian model averaging: A tutorial, Stat. Sci., 14(4), 382-417.
Højberg, A., and J. Refsgaard (2005), Model uncertainty - Parameter uncertainty versus conceptual models, Water Sci. Technol., 52(6), 177-186.
Jensen, J. (2003), Parameter and uncertainty estimation in groundwater modelling, PhD thesis, 143 pp., Aalborg Univ., Aalborg, Denmark.
Kashyap, R. (1982), Optimal choice of AR and MA parts in autoregressive moving average models, IEEE Trans. Pattern Anal. Mach. Intel, 42(9), 99-104.
Kass, R., and L. Wasserman (1996), The selection of prior distributions by formal rules, J. Am. Stat. Assoc., 91(435), 1343-1370.
Madigan, D., and A. Raftery (1994), Model selection and accounting for model uncertainty in graphical models using Occam's window, J. Am. Stat. Assoc., 89(428), 1535-1546.
Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, J. Hydrol., 330(1-2), 368-381, doi:10.1016/j.jhydrol.2006.04.046.
Mantovan, P., E. Todini, and M. Martina (2007), Reply to comment by Keith Beven, Paul Smith and Jim Freer on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology", J. Hydrol., 338(3-4), 319-324, doi:10.1016/j.jhydrol.2007.02.029.
McKay, M., W. Conover, and R. Beckman (1979), A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21(2), 239-245.
Meyer, P., M. Ye, S. Rockhold, S. Neuman, and K. Cantrell (2007), Combined estimation of hydrogeologic conceptual model, parameter and scenario uncertainty with application to uranium transport at the Hanford site 300 area, Rep. NUREG/CR-6940 PNNL-16396, US Nuclear Regulatory Commission, Washington, D. C.
Montanari, A. (2005), Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 41, W08406, doi:10.1029/2004WR003826.
Morse, G., G. Pohll, J. Huntington, and R. Rodriguez (2003), Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology, Water Resour. Res., 39(6), 1151, doi:10.1029/2002WR001470.
Nash, J., and J. Sutcliffe (1970), River flow forecasting through conceptual models. part I: A discussion of principles, J. Hydrol., 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6.
Neuman, S. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17(5), 291-305, doi:10.1007/s00477-003-0151-7.
Neuman, S., and P. Wierenga (2003), A comprehensive strategy of hydrogeologic modelling and uncertainty analysis for nuclear facilities and sites, Rep. NUREG/CR-6805, US Nuclear Regulatory Commission, Washington, D. C.
Poeter, E., and D. Anderson (2005), Multimodel ranking and inference in ground water modeling, Ground Water, 43(4), 597-605, doi:10.1111/j.1745- 6584.2005.0061.x.
Raftery, A., and Y. Zheng (2003), Discussion: Performance of Bayesian model averaging, J. Am. Stat. Assoc., 98(464), 931-938.
Refsgaard, J., J. van der Sluijs, J. Brown, and P. van de Keur (2006), A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29(11), 1586-1597, doi:10.1016/j.advwatres.2005.11.013.
Romanowicz, R., K. Beven, and J. Tawn (1994), Evaluation of prediction uncertainty in non-linear hydrological models using a Bayesian approach, in Statistics for the Environment II: Water Related Issues, edited by V. Barnett and K. Turkman, pp. 297-317, John Wiley, New York.
Rubin, Y. (2003), Applied Stochastic Hydrogeology, 391 pp., Oxford Univ. Press, New York.
Sun, N.-Z. (1994), Inverse Problems in Groundwater Modeling - Theory and Applications of Transport in Porous Media, 352 pp., Kluwer Academic Publishers, Netherlands.
Troldborg, L., J. Refsgaard, K. Hogh, and P. Engesgaard (2007), The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system, Hydrogeol. J., 15(5), 843-860, doi:10.1007/s10040-007-0192-y.
Ye, M., S. Neuman, and P. Meyer (2004), Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resour. Res., 40, W05113, doi:10.1029/2003WR002557.
Ye, M., S. Neuman, P. Meyer, and K. Pohlmann (2005), Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff, Water Resour. Res., 41, W12429, doi:10.1029/2005WR004260.
Ye, M., K. Pohlmann, J. Chapman, and D. Shafer (2006), On evaluation of recharge model uncertainty: A priori and a posteriori, in Proceedings of the International High-level Radioactive Waste Management Conference, 12 pp., Las Vegas, Nev.