[en] The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4<0.2 μM) and silicate (DSi<2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L-1), high particulate inorganic carbon (PIC) concentration (~8 μmol L-1) and coccolithophore abundance up to 57×106 cells L-1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 120 μg Xeq L-1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L-1 in the upper 40 m). Integrated primary production (PP) ranged between 210 mg C m-2 d-1 and 680 mg C m-2 d-1 and integrated calcification (CAL) ranged between 14 and 140 mg C m-2 d-1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3 to 0.7 μg C L-1 h-1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to -49 μmol kg-1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15 to 107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton
2
Disciplines :
Earth sciences & physical geography
Author, co-author :
Harlay, Jérôme ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Van Der Zee, Claar; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Godoi, Ricardo; Micro and Trace Analysis Centre (MiTAC), Universiteit Antwerpen, B-2610 Antwerp, Belgium
Roevros, Nathalie; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Aerts, Katrien; Micro and Trace Analysis Centre (MiTAC), Universiteit Antwerpen, B-2610 Antwerp, Belgium
Lapernat, Pascale-Emmanuelle; Laboratorium voor Ecologie en Systematiek,ECOL, Vrij Universiteit Brussel, B-1050 Brussels, Belgium
Rebreanu, Laura; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Ackleson S.G., Balch W.M., Holligan P. Response of water-leaving radiance to particulate calcite and chlorophyll a concentrations: a model for Gulf of Maine coccolithophore blooms. Journal of Geophysical Research 1994, 99:7483-7500.
Alldredge A.L., Cole J.J., Caron D.A. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnology and Oceanography 1986, 31:68-78.
Azetsu-Scott K., Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean. Limnology and Oceanography 2004, 49:741-748.
Balch W.M., Holligan P., Ackleson S.G., Voss K.J. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography 1991, 36:629-643.
Balch W.M., Kilpatrick K.A., Holligan P., Harbour D., Fernandez E. The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnology and Oceanography 1996, 41:1684-1696.
Balch W.M., Gordon H.R., Bowler B.C., Drapeau D.T., Booth E.S. Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. Journal of Geophysical Research 2005, 110:C07001. 10.1029/2004JC002560.
Balch W.M., Drapeau D., Bowler B., Booth E. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Research Part II: Topical Studies in Oceanography 2007, 54:478-495.
Bates N.R., Michaels A.F., Knap A.H. Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification?. Marine Chemistry 1996, 51:347-358.
Beaufort L., Heussner S. Seasonal dynamics of calcareous nannoplankton on a West European continental margin: the Bay of Biscay. Marine Micropaleontology 2001, 43:27-55.
Beaufort L., Probert I., Buchet N. Effects of acidification and primary production on coccolith weight: implications for carbonate transfer from the surface to the deep ocean. Geochemistry Geophysics Geosystems 2007, 8:8011.
Benson B.B., Krause D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology Oceanography 1984, 29:620-632.
Bhaskar P.V., Bhosle N.B. Dynamics of transparent exopolymeric particles (TEP) and particle-associated carbohydrates in the Dona Paula bay, west coast of India. Journal of Earth System Science 2006, 115:403-413.
Bhaskar P.V., Grossart H.-P., Bhosle N.B., Simon M. Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiology Ecology 2005, 53:255-264.
Bondarenko I., Treiger B., Van Grieken R., Van Espen P. IDAS: a Windows based software package for cluster analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 1996, 51:441-456.
Borges A.V., Schiettecatte L.-S., Abril G., Delille B., Gazeau F. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 2006, 70:375-387.
Broerse A.T.C., Ziveri P., Honjo S. Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: seasonality, settling and alteration processes. Marine Micropaleontology 2000, 39:179-200.
Broerse A.T.C., Ziveri P., Van Hinte J.E., Honjo S. Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W). Deep Sea Research Part II: Topical Studies in Oceanography 2000, 47:1877-1905.
Brown C.W., Yoder J.A. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research 1994, 99:7467-7482.
Buitenhuis E., van Bleijswijk J., Bakker D., Veldhuis M. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series 1996, 143:271-282.
Buitenhuis E., van der Wal P., de Baar H. Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide; a field and mesocosm study derived simulation. Global Biogeochemical Cycles 2001, 15:577-588.
Cadée G.C. Macroaggregates of Emiliana huxleyi in sediment traps. Marine Ecology Progress Series 1985, 24:193-196.
Chin W., Orellana M.V., Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998, 391:568-572.
Copin-Montégut C. A new formula for the effect of temperature on the partial pressure of carbon dioxide in seawater. Marine Chemistry 1988, 25:29-37.
Copin-Montégut C. A new formula for the effect of temperature on the partial pressure of carbon dioxide in seawater, Corrigendum. Marine Chemistry 1989, 27:143-144.
Crawford D.W., Purdie D.A. Increase of pCO2 during blooms of Emiliania huxleyi: theoretical considerations on the asymmetry between acquisition of HCO3- and respiration of free CO2. Limnology and Oceanography 1997, 42:365-372.
De La Rocha C.L., Passow U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography 2007, 54:639-658.
de Wilde P.A.W.J., Duineveld G.C.A., Berghuis E.M., Lavaleye M.S.S., Kok A. Late-summer mass deposition of gelatinous phytodetritus along the slope of the N.W. European Continental Margin. Progress in Oceanography 1998, 42:165-187.
Delille B., Harlay J., Zondervan I., Jacquet S., Chou L., Wollast R., Bellerby R.G.J., Frankignoulle M., Borges A.V., Riebesell U., Gattuso J.-P. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles 2005, 19:GB2023.
Dickson A.G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15K. Deep Sea Research Part A. Oceanographic Research Papers 1990, 37:755-766.
Dickson A.G., Sabine C.L., Christian J.R., 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication, vol. 191. North Pacific. IOCCP Report No. 8.
Egge J.K., Aksnes D.L. Silica as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series 1992, 83:281-289.
Eilers P.H.C., Peeters J.C.H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modeling 1988, 42:199-215.
Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Research Part I: Oceanographic Research Papers 2004, 51:83-92.
Engel A., Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecology Progress Series 2001, 219:1-10.
Engel A., Schartau M. Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzschia closterium aggregates. Marine Ecology Progress Series 1999, 182:69-76.
Engel A., Goldthwait S., Passow U., Alldredge A.L. Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnology and Oceanography 2002, 47:753-761.
Engel A., Delille B., Jacquet S., Riebesell U., Rochelle-Newall E., Terbruggen A., Zondervan I. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology 2004, 34:93-104.
Engel A., Zondervan I., Aerts K., Benthien A., Chou L., Delille B., Gattuso J.-P., Harlay J., Heemann C., Hoffmann L., Jacquet S., Nejstgaard J., Pizay M.-D., Rochelle-Newall E., Schneider U., Terbrueggen A., Riebesell U. Testing the direct effects of CO2 concentration on marine phytoplankton: a mesocosm experiment with the coccolithophorid Emiliania huxleyi. Limnology and Oceanography 2005, 50:493-507.
Fagerbakke K.M., Heldal M., Norland S., Heimdal B.R., Båtvik H. Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord. Sarsia 1994, 79:349-355.
Feely R.A., Sabine C.L., Lee K., Millero F.J., Lamb M.F., Greeley D., Bullister J.L., Key R.M., Peng T.H., Kozyr A., Ono T., Wong C.S. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles 2002, 16:1144. 10.1029/2002 GB001866.
Fernández E., Boyd P.W., Holligan P.M., Harbour D.S. Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Marine Ecology Progress Series 1993, 97:271-285.
Frankignoulle M., Borges A.V. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles 2001, 15:569-576.
Frankignoulle M., Borges A.V., Biondo R. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Research 2001, 35:1344-1347.
Fritz J.J., Balch W.M. A light-limited continuous culture study of Emiliania huxleyi: a determination of coccolith detachment and its relevance to cell sinking. Journal of Experimental Marine Biology and Ecology 1996, 207:127-147.
Garcia-Soto C., Fernandez E., Pingree R.D., Harbour D.S. Evolution and structure of a shelf coccolithophore bloom in the Western English Channel. Journal of Plankton Research 1995, 17:2011-2036.
Godoi R.H.M., Aerts K., Harlay J., Kaegi R., Chul-Un R., Chou L., Van Grieken R. Organic surface coating on coccolithophores - Emiliania huxleyi: its determination and implication in the marine carbon cycle. Microchemical Journal 2009, 91(2):266-271.
Gondwe M., Klaasen W., Gieskes W., de Baar H.J.W. The direct radiative impact of coccolithophore blooms on basin-scale climate. Geophysical Research Letters 2001, 28:3911-3914.
Gordon H.R., Du T. Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi. Limnology and Oceanography 2001, 46:1438-1454.
Gran G. Determination of the equivalence point in potentiometric titrations. Analyst (Part II) 1952, 661:667.
Grasshoff K., Ehrhardt M., Kremling K. Methods of Seawater Analysis 1983, Verlag Chemie, Weinheim.
GREPMA Satellite (AVHRR:NOAA-9) and ship studies of a coccolithophorid bloom in the western English Channel (Viollier, M., Sournia, A., Birrien, M.-J., Chrétiennot-Dinet, P., Le Borgne, P., Le Corre, P., Morin, P., and Olry, J.P.). Marine Nature 1988, 1:1-14.
Grossart H.-P., Allgaier M., Passow U., Riebesell U. Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnology and Oceanography 2006, 51:1-11.
Harlay J., De Bodt C., Engel A., Jansen S., d'Hoop Q., Piontek J., Van Oostende N., Groom S., Sabbe K., Chou L. Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay. DSR Part I 2009, 56:1251-1265.
Harris R.P. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology 1994, 119(3):431-439.
Head R.N., Crawford D.W., Egge J.K., Harris R.P., Kristiansen S., Lesley D.J., Marañon E., Pond D., Purdie D.A. The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea. Journal of Sea Research 1998, 39:255-266.
Holligan P.M., Viollier M., Harbour D.S., Camus P., Champagne-Philippe M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 1983, 304:339-342.
Holligan P.M., Fernández E., Aiken W., Balch W.M., Boyd P.W., Burkill P.H., Finch M., Groom S.B., Malin G., Muller K., Purdie D.A., Robinson C., Trees C.C., Turner S.M., van der Wal P. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochemical Cycles 1993, 7:879-900.
Holligan P.M., Groom S.B., Harbour D.S. What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea?. Fisheries Oceanography 1993, 2:175-183.
Honjo S., Manganini S.J., Krishfield R.A., Francois R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progress in Oceanography 2008, 76:217-285.
Huthnance J.M., Coelho H., Griffiths C.R., Knight P.J., Rees A.P., Sinha B., Vangriesheim A., White M., Chatwin P.G. Physical structures, advection and mixing in the region of Goban spur. Deep Sea Research Part II: Topical Studies in Oceanography 2001, 48:2979-3021.
Joint I., Wollast R., Chou L., Batten S., Elskens M., Edwards E., Hirst A., Burkill P.H., Groom S., Gibb S., Miller A., Hydes D.J., Dehairs F., Antia A.N., Barlow R., Rees A., Pomroy A., Brockmann U., Cimmings D., Lampitt R., Loijens M., Mantoura F., Miller P., Raabe T., Alvarez-Salgado X., Stelfox C., Woolfenden J. Pelagic production at the Celtic Sea shelf break. Deep Sea Research Part II: Topical Studies in Oceanography 2001, 48:3049-3081.
Kaźmierczak J., Ittekkot V., Degens E.T. Biocalcification through time: environmental challenge and cellular response. Paläontologische Zeitschrift 1985, 59(1-2):15-33.
Kelly-Gerreyn B.A., Hydes D.J., Jegou A.M., Lazure P., Fernand L.J., Puillat I., Garcia-Soto C. Low salinity intrusions in the western English Channel. Continental Shelf Research 2006, 26:1241-1257.
Kepkay P.E. Particle aggregation and the biological reactivity of colloids. Marine Ecology Progress Series 1994, 109:293-304.
Kiorboe T. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnology and Oceanography 2000, 45:479-484.
Knap, A.H., Michaels, A.E., Close, A., Ducklow, H.W., Dickson, A.G., 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Bergen, Norway, UNESCO. JGOFS Report.
Lampert L., Quéguiner B., Labasque T., Pichon A., Lebreton N. Spatial variability of phytoplankton composition and biomass on the eastern continental shelf of the Bay of Biscay (north-east Atlantic Ocean). Evidence for a bloom of Emiliania huxleyi (Prymnesiophyceae) in spring 1998. Continental Shelf Research 2002, 22:1225-1247.
Lee K.-S. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnology and Oceanography 2001, 46:1287-1297.
Lewis E., Wallace D.W.R. Program Developed for CO2 System Calculations. ORNL/CDIAC. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory 1998, US Department of Energy, Oak Ridge, Tennessee.
Ling S.C., Alldredge A.L. Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)?. Journal of Plankton Research 2003, 25:507-515.
Linschooten C., van Bleijswijk J.D.L., Van Emburg P.R., De Vrind J.P.M., Kempers E.S., Westbroek P., De Vrind-De Jong E.W. Role of light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). Journal of Phycology 1991, 27:82-86.
Marañón E., González N. Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea. Marine Ecology Progress Series 1997, 157:61-77.
Marañon E., Fernandez E., Harris R.P., Harbour D. Effects of the diatom - Emiliania huxleyi succession on photosynthesis, calcification and carbon metabolism by size-fractionated phytoplankton. Hydrobiologia 1996, 317:189-199.
Mari X., Kiorboe T. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat. Journal of Plankton Research 1996, 18:969-986.
Mari X., Rassoulzadegan F. Role of TEP in the microbial food web structure. I. Grazing behavior of a bacterivorous pelagic ciliate. Marine Ecology Progress Series 2004, 279:13-22.
Mari X., Rassoulzadegan F., Brussaard C.P.D., Wassmann P. Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae 2005, 4:895-914.
Marsh M.E. Regulation of CaCO3 formation in coccolithophores. Comparative Biochemistry and Physiology B - Biochemistry & Molecular Biology 2003, 136:743-754.
McCave I.N., Hall I.R., Antia A.N., Chou L., Dehairs F., Lampitt R.S., Thomsen L., van Weering T.C.E., Wollast R. Distribution, composition and flux of particulate material over the European margin at 47-50°N. Deep Sea Research Part II: Topical Studies in Oceanography 2001, 48:3107-3139.
Mehrbach C., Culberson C.H., Hawley J.E., Pytkowitz R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 1973, 18:897-907.
Merico A., Tyrrell T., Brown C.W., Groom S.B., Miller P.I. Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophysical Research Letters 2003, 30:1337.
Merico A., Tyrrell T., Cokacar T. Is there any relationship between phytoplankton seasonal dynamics and the carbonate system?. Journal of Marine Systems 2006, 59:120-142.
Milliman J.D., Troy P.J., Balch W.M., Adams A.K., Li Y.H., Mackenzie F.T. Biologically mediated dissolution of calcium carbonate above the chemical lysocline?. Deep Sea Research Part I: Oceanographic Research Papers 1999, 46:1653-1669.
Mopper K., Zhou J., Sri Ramana K., Passow U., Dam H.G., Drapeau D.T. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Research Part II: Topical Studies in Oceanography 1995, 42:47-73.
Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 1983, 283:781-799.
Murata A., Takizawa T. Impact of a coccolithophorid bloom on the CO2 system in surface waters of the eastern Bering Sea shelf. Geophysical Research Letters 2002, 29:1547. 10.1029/2001GL013906.
Nanninga H.J., Tyrrell T. Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecology Progress Series 1996, 136:195-203.
Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2002, 40:503-529.
Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography 2002, 55:287-333.
Passow U., Alldredge A.L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography 1995, 40:1326-1335.
Passow U., Alldredge A.L. Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Research Part II: Topical Studies in Oceanography 1995, 42:99-109.
Passow U., Alldredge A.L. Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica?. Journal of Plankton Research 1999, 21:2203-2217.
Purdie D.A., Finch M. The impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia 1994, 79:379-387.
Rees A.P., Joint I., Donald K.M. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea Shelf Edge. DSR Part I 1999, 46:483-510.
Rees A.P., Woodward E.M., Robinson C., Cummings D.G., Tarran G.A., Joint I. Size-fractionated nitrogen uptake and carbon fixation during a developing coccolithophore bloom in the North Sea during June 1999. Deep Sea Research Part II: Topical Studies in Oceanography 2002, 49:2905-2927.
Reynolds R.W., Rayner N.A., Smith T.M., Stokes D.C., Wang W.Q. An improved in situ and satellite SST analysis for climate. Journal of Climate 2002, 15:1609-1625.
Riebesell U., Zondervan I., Rost B., Tortell P.D., Zeebe R.E., Morel F.M.M. Reduced calcification of marine plankton in response of increased atmospheric CO2. Nature 2000, 407:364-367.
Riebesell U., Schulz K.G., Bellerby R.G.J., Botros M., Fritsche P., Meyerhofer M., Neill C., Nondal G., Oschlies A., Wohlers J., Zollner E. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450:545-548.
Riemann F. Gelatinous phytoplankton detritus aggregates on the Atlantic deep-sea bed. Marine Biology 1989, 100:533-539.
Robertson J.E., Robinson C., Turner D.R., Holligan P., Watson A.J., Boyd P.W., Fernández E., Finch M. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep Sea Research Part I: Oceanographic Research Papers 1994, 41:297-314.
Sabine C.L., Key R.M., Feely R.A., Greeley D. Inorganic carbon in the Indian Ocean: distribution and dissolution processes. Global Biogeochemical Cycles 2002, 16:1067. 10.1029/2002GB001869.
Santschi P.H., Hung C.-C., Schultz G., Alvarado-Quiroz N., Guo L., Pinckney J., Walsh I. Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms. Geophysical Research Letters 2002, 30:1044-1047.
Schartau M., Engel A., Schröter J., Thoms S., Völker C., Wolf-Gladrow D. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences 2007, 4:433-454.
Schiebel R., Waniek J., Zeltner A., Alves M. Impact of the Azores Front on the distribution of planktic foraminifers, shelled gastropods, and coccolithophorids. Deep Sea Research Part II: Topical Studies in Oceanography 2002, 49:4035-4050.
Sciandra A., Harlay J., Lefèvre D., Lemée R., Rimmelin P., Denis M., Gattuso J.-P. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Marine Ecology Progress Series 2003, 261:111-122.
Simon M., Azam F. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 1989, 51:201-213.
Smyth T.J., Tyrrell T., Tarrant B. Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery. Geophysical Research Letters 2004, 31:1-4.
Tyrrell T., Merico A. Emiliania huxleyi: Bloom Observations and the Conditions that Induce them. Coccolithophores. From Molecular Processes to Global Impact 2004, 75-97. Springer. H.R. Thierstein, J.R. Young (Eds.).
Tyrrell T., Holligan P., Mobley C.D. Optical impacts of oceanic coccolithophore blooms. Journal of Geophysical Research 1999, 104:3223-3241.
van der Wal P., van Bleijswijk J.D.L., Egge J.K. Primary productivity and calcification rate in blooms of the coccolithophorid Emiliania huxleyi (LOHMANN) HAY et MOHLER developing in mesocosms. Sarsia 1994, 79:401-408.
van der Wal P., Kempers R.S., Veldhuis M.J.W. Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series 1995, 126:247-265.
Verdugo P., Alldredge A.L., Azam F., Kirchman D.L., Passow U., Santschi P.H. The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chemistry 2004, 92:67-85.
Westbroek P., Brown C.W., van Bleijswijk J.D.L., Brownlee C., Brummer G.-J., Conte M., Egge J.K., Fernández E., Jordan R., Knappertsbusch M., Stefels J., Veldhuis M.J.W., van der Wal P., Young J.R. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change 1993, 8:27-46.
Wollast R., Chou L. Distribution and fluxes of calcium carbonate along the continental margin in the Gulf of Biscay. Aquatic Geochemistry 1998, 4:369-393.
Wollast R., Chou L. Ocean Margin EXchange in the Northern Gulf of Biscay: OMEX I. An introduction. Deep Sea Research Part II: Topical Studies in Oceanography 2001, 48:2971-2978.
Wollast R., Chou L. The carbon cycle at the ocean margin in the northern Gulf of Biscay. Deep Sea Research Part II: Topical Studies in Oceanography 2001, 48:3265-3293.
Yentsch C.S., Menzel D.W. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research and Oceanographic Abstracts 1963, 10:221-231.
Young J.R., Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 2000, 47:1679-1700.
Young J.R., Davis S.A., Bown P.R., Mann S. Coccolith Ultrastructure and Biomineralisation. Journal of Structural Biology 1999, 126:195-215.
Ziveri P., Broerse A.T.C., Van Hinte J.E., Westbroek P., Honjo S. The fate of coccoliths at 48 N 21 W, Northeastern Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography 2000, 47:1853-1875.
Ziveri P., De Bernardi B., Baumann K.H., Stoll H.M., Mortyn P.G. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Research Part II: Topical Studies in Oceanography 2007, 54:659-675.
Zondervan I., Rost B., Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Biology and Ecology 2002, 272:55-70.
Zubkov M.V., Fuchs B.M., Archer S.D., Kiene R.P., Amann R., Burkill P.H. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Research Part II: Topical Studies in Oceanography 2002, 49:3017-3038.