[en] The carbon fluxes, stocks and isotopic budgets of the land biosphere at mid-Holocene (6 ka BP) and last glacial maximum (21 ka BP) times are reconstructed with the CARbon Assimilation In the Biosphere (CARATB) model forced with two different sets of climates simulated by the European Centre-HAMburg (ECHAM) and LMD general circulation models. It is found that the trends predicted on the basis of both sets of GCM climatic fields are generally consistent with each other, although substantial discrepancies in the magnitude of the changes may be observed. Actually, these discrepancies in the biospheric results associated with the use of different GCM climatic fields are usually smaller than the differences between biospheric runs performed while considering or neglecting the CO2 fertilization effect (which might, however, be overestimated by the model due to uncertainties concerning changes in nutrient availability). The calculated changes with respect to the present of the biosphere carbon stock range from - 132 to + 92 Gt C for the mid-Holocene and from -710 to +70 Gt C for the last glacial maximum. It is also shown that the relative contribution of the material synthesized by C-4 plants to the total biomass of vegetation, litter and soils was substantially larger at mid-Holocene and last glacial maximum times than today. This change in the relative importance of the C-3 and C-4 photosynthetic pathways induced changes in the C-13 fractionation of the land biosphere. These changes in the average biospheric fractionation resulting from the redistribution of C-3 and C-4 plants were partly compensated for by changes of opposite sign in the fractionation of C-3 plants due to the modification of the intercellular CO2 pressure within their leaves. With respect to present times, the combination of both processes reduced the C-13 discrimination (i.e., less negative fractionation) of the land biosphere by 0.03 to 0.32 parts per thousand during the mid-Holocene and by 0.30 to 1.86 parts per thousand at the last glacial maximum. (C) 1999 Elsevier Science B.V. All rights reserved.
Disciplines :
Earth sciences & physical geography
Author, co-author :
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Godderis, Y.; Université de Liège - ULiège > LPAP
Warnant, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Ramstein, G.; CNRS/CEA > Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
de Noblet, N.; CNRS/CEA > Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
Lorenz, S.; Universität Bremen Fachbereich > Geowissenschaften
Language :
English
Title :
Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times
Adams J.M., Faure H., Faure-Denard L., McGlade J.M., Woodward F.I. Increases in the terrestrial carbon storage from the Last Glacial Maximum to the present. Nature. 348:1990;711-714.
An, Z.S., Wu, X., Lu, Y., Zhang, D., Sun, X., Dong, G., 1991. A preliminary study of the paleoenvironment changes of China during the last 20,000 years. In: Liu, D.S. (Ed.), Quaternary Geology and Global Change. Beijing, China, pp. 1-26, in Chinese.
Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Bigins, J. (Ed.), Progress in Photosynthesis Research, Vol. 4. Nijhoff, Dordrecht, pp. 221-224.
Barnola J.-M., Raynaud D., Korotkevich Y.S., Lorius C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature. 329:1987;408-414.
Berger, W.H., Keir, R.S., 1984. Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. In: Hansen, J.E., Takahashi (Eds.), Climate Processes and Climate Sensitivity. Geophys. Monogr. Ser., Vol. 29. American Geophysical Union, Washington DC, pp. 337-351.
Bird M.I., Pousai P. Variations of. δ13C in surface soil organic carbon pool Global Biogeochemical Cycles. 11:1997;313-322.
Bird M.I., Lloyd J., Farquhar G.D. Terrestrial carbon storage at the LGM. Nature. 371:1994;566.
Bird M.I., Chivas A.R., Head J. A latitudinal gradient in carbon turnover times in forest soils. Nature. 381:1996;143-146.
Broecker W.S., Peng T.-H. The cause of the glacial to interglacial atmospheric CO2 change: a polar alkalinity hypothesis. Global Biogeochemical Cycles. 3:1989;215-239.
Chalita S., le Treut H. The albedo of temperate and boreal forests and the Northern hemisphere climate: a sensitivity experiment using the LMD AGCM. Climate Dynamics. 10:1994;231-240.
CLIMAP Project Members The surface of the ice-age Earth. Science. 191:1976;1131-1137.
CLIMAP Project Members, 1981. Seasonal reconstruction of the earth's surface at the last glacial maximum. Geol. Soc. America Map Chart Ser., MC-36, Geol. Soc. Am., Boulder, CO.
Collatz G.J., Ribas-Carbo M., Berry J.A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19:1992;519-538.
Crowley T.J. Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles. 9:1995;377-389.
de Noblet N., Prentice I.C., Joussaume S., Texier D., Botta A., Haxeltine A. Possible role of atmosphere-biosphere interactions triggering the last glaciation. Geophys. Res. Lett. 23:1996;3191-3194.
DKRZ, 1994. The Atmospheric General Circulation Model. Technical Report 6, Modellbetreuungsgruppe, Deutsches Klimarechenzentrum, Hamburg.
Ducoudré N., Laval K. SECHIBA a new set of parametrization of the hydrologic exchanges at the land atmosphere interface within the LMD AGCM. Journal of Climate. 6:1993;249-273.
Dümenil, L., Todini, E., 1992. A rainfall runoff scheme for use in the Hamburg climate model. In: O'Kane, J.P. (Ed.), Advances in Theoretical Hydrology, A Tribute to James Dooge. European Geophysical Society Series of Hydrological Sciences, Vol. 1. Elsevier, Amsterdam, pp. 129-157.
Duplessy J.-C., Shackleton N.J., Fairbanks R.G., Labeyrie L., Oppo D., Kallel N. Deep water source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography. 3:1988;343-360.
Esser G., Lautenschlager M. Estimating the change of carbon in the terrestrial biosphere from 18,000 bp to present using a carbon cycle model. Environ. Pollut. 83:1994;45-53.
Farquhar G.D., von Caemmerer S., Berry J.A. A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149:1980;78-90.
Foley J. The sensitivity of the terrestrial biosphere to climate change: a simulation of the middle Holocene. Global Biogeochemical Cycles. 8:1994;505-525.
Fouquart Y., Bonnel B. Computations of solar heating of the Earth atmosphere: a new parametrization. Beitr. Phys. Atmos. 53:1980;35.
François L.M., Delire C., Warnant P., Munhoven G. Modelling the glacial-interglacial changes in the continental biosphere. Global Planet. Change. 16-17:1998;37-52.
Friedli H., Loetscher H., Oeschger H., Siegenthaler U., Stauffer B. Ice core record of the. 13C / 12C ratio of atmospheric CO2 in the past two centuries Nature. 324:1986;237-238.
Friedlingstein P., Delire C., Müller J.-F., Gérard J.-C. The climate-induced variation of the continental biosphere: a model simulation of the Last Glacial Maximum. Geophys. Res. Lett. 19:1992;897-900.
Friedlingstein P., Prentice K.C., Fung I.Y., John J.G., Brasseur G.P. Carbon-biosphere-climate interactions in the last glacial maximum. J. Geophys. Res. 100:1995;7203-7221.
Gallimore R.G., Kutzbach J.E. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature. 381:1996;503-505.
Gates W.L. The Atmospheric Model Intercomparison Project (AMIP). Bull. Am. Meteorol. Soc. 73:1992;1962-1970.
Gates, W.L., Nelson, A.B., 1975. A new, revised, tabulation of the Scripps topography on a 1 degree global grid. The Rand. R-1276-1-ARPA.
Geleyn J.F., Preuss H.J. A new data set of satellite-derived surface albedo values for operational use at ECMWF. Arch. Meteor. Geophys. Bioclim., Ser. A. 32:1983;353-359.
Gibbs M.T., Kump L.R. Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography. 9:1994;529-543.
Hense A., Kerschgens M., Raschke E. An economical method for computing radiative transfer in circulation models. Q. J. R. Meteor. Soc. 108:1982;231-252.
Hubert, B., François, L.M., Warnant, P., Strivay, D., 1998. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. J. Hydrol., 212-213, 318-334.
Hunt E.R. Jr., Piper S.C., Nemani R., Keeling C.D., Otto R.D., Running S.W. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochemical Cycles. 10:1996;431-456.
Joussaume, S., Taylor, K., 1995. Status of the paleoclimate Modeling Intercomparison Project. In: Gates, W.L. (Ed.), Proceedings of the First International AMIP Scientific Conference, WCRP-92, pp. 415-430.
Jouzel J., Barkov N.I., Barnola J.M., Bender M., Chapellaz J., Genthon C., Kotlyakov V.M., Lipenkov V., Lorius C., Petit J.-R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stievenard M., Yiou F., Yiou P. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature. 364:1993;407-412.
Khotinsky, N.A., 1984. Holocene vegetation history. In: Velichko, A.A., Wright, J.H.E., Barnosky, C.W. (Eds.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp. 179-200.
Knox F., McElroy M.B. Changes in atmospheric CO2: influence of the marine biota at high latitude. J. Geophys. Res. 89:1984;4629-4637.
Kuo H.L. On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 22:1965;1482-1497.
Kutzbach J., Bonan G., Foley J., Harrison S.P. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature. 384:1996;623-626.
Leemans, R., Cramer, W.P., 1991. The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. IIASA-Report RR-91-18, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Leuenberger M., Siegenthaler U., Langway C.C. Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature. 357:1992;488-490.
Martin J.H. Glacial-interglacial CO2 changes: the iron hypothesis. Paleoceanography. 5:1990;1-13.
Mitchell J.F.B., Grahame N.S., Needham K.H. Climate simulations for 9000 years before present: seasonal variations and effect of the Laurentide ice sheet. J. Geophys. Res. 93:1988;8283-8303.
Morcrette J.-J. Radiation and cloud radiative properties in the ECMWF operational weather forcast model. J. Geophys. Res. 96:1991;9121-9132.
Munhoven G., François L.M. Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: a model study. J. Geophys. Res. 101:1996;21423-21437.
Nemry B., François L.M., Warnant P., Robinet F., Gérard J.-C. The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic model. J. Geophys. Res. 101:1996;7111-7125.
O'Leary, M.H., 1993. Biochemical basis of carbon isotope fractionation. In: Ehleringer et al., J.R. (Eds.), Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, CA, pp. 19-28.
Opdyke B.N., Walker J.C.G. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology. 20:1992;733-736.
Peltier W.R. Ice age paleotopography. Science. 265:1994;195-201.
Peng C., Apps M. Contribution of China to the global carbon cycle since the last glacial maximum: reconstruction from palaeovegetation maps and an empirical biosphere model. Tellus. 49B:1997;393-408.
Prentice K.C., Fung I.Y. The sensitivity of terrestrial carbon storage to climate change. Nature. 346:1990;48-51.
Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A., Solomon A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19:1992;117-134.
Prentice I.C., Sykes M.T., Lautenschlager M., Harrison S.P., Dennissenko O., Bartlein P.J. Modelling the global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecol. Biogeogr. Lett. 3:1993;67-76.
Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus. 44B:1992;81-89.
Raich J.W., Rastetter E.B., Melillo J.M., Kicklighter D.W., Steudler P.A., Peterson B.J., Grace A.L., Moore B. III, Vörösmarty C.J. Potential net primary productivity in South America: application of a global model. Ecol. Appl. 1:1991;399-429.
Ramstein G., Serafini-le Treut Y., le Treut H., Forichon M., Joussaume S. Cloud processes associated with past and future climate changes. Climate Dynamics. 14:1998;233-247.
Ritchie J.C., Cwynar L.C., Spear R.W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature. 305:1983;126-128.
Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M., 1992. Simulation of the Present-Day Climate with the ECHAM Model: Impact of Model Physics and Resolution. Max-Planck-Institut für Meteorologie, Report 93.
Sadourny, R., Laval, K., 1984. January and July performance of the LMD general circulation model. In: Berger, A., Nicolis, C. (Eds.), New Perspectives in Climates Modelling. pp. 173-198.
Sarmiento J.L., Toggweiler A new model for the role of the oceans in determining atmospheric pCO2. Nature. 308:1984;621-624.
Siegenthaler U., Wenk T. Rapid atmospheric CO2 variations and ocean circulation. Nature. 308:1984;624-626.
Spero H.J., Bijma J., Lea D.W., Bemis B.E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature. 390:1997;497-500.
Street-Perrott, F.A., Perrott, R.A., 1993. Holocene vegetation, lake levels and climate of Africa. In: Wright, H.E.J., Kutzbach, J.E., Webb, T., Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (Eds.), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, pp. 318-356.
Teeri J.A., Stowe L.G. Climatic patterns and the distribution of C4 grasses in North America. Oecologia. 23:1976;1-12.
Tinker, P.B., Ineson, P., 1990. Soil organic matter and biology in relation to climate change. In: Scharpenseel, H.W., Schomaker, M., Ayoub, A. (Eds.), Soils on a Warmer Earth, Developments in Soil Science, Vol. 20. Elsevier, Amsterdam, pp. 71-87.
Tushingham H.M., Peltier W.R. A global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J. Geophys. Res. 96:1991;4497-4523.
van Campo E., Guiot J., Peng C. A data-based re-appraisal of the terrestrial carbon budget at the last glacial maximum. Global Planet. Change. 8:1993;189-201.
Walker J.C.G., Opdyke B.N. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments. Paleoeanography. 10:1995;415-427.
Warnant P., François L.M., Strivay D., Gérard J.-C. CARAIB: a global model of terrestrial biological productivity. Global Biogeochemical Cycles. 8:1994;255-270.