[en] Numerous groundwater vulnerability and risk mapping techniques have been developed taking into consideration a variable number of factors. The most common techniques are based on calculation of an index expressing the protective effect of underground formations overlying the groundwater resource. The limitation of most of these methods is related to their use of a qualitative definition of groundwater vulnerability, as opposed to a definition based on a quantitative description of contaminant migration. A physically-based point of view and definition of the vulnerability is proposed and based on three factors describing a pollution event, which are the contaminant transfer time from the hazard location to the 'target', the contamination duration at the 'target' and the level of contaminant concentration reached at the 'target'. This concept allows a clear distinction between conventional aspects and physically-based results in the building of a final vulnerability indicator. This methodology has the further advantage to consider the possible impact of runoff conditions occurring at the land surface and possibly leading to lateral contamination of groundwater through downstream preferential infiltration features. Practically, this method needs to describe and simulate the pollutant migration in the unsaturated zone and possibly in the saturated zone in order to assess the breakthrough curve at the 'target'. Preliminary application is illustrated on a case-study located in a limestone basin in Belgium. Perspectives are proposed towards a generalisation of the vulnerability concept for risk assessment within a pressure - state - impact framework.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Popescu, Ileana Cristina; Ministère de la Région Wallonne > DGRNE > Eaux Souterraines
Gardin, Nicolas; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'Environnement
Brouyère, Serge ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Groundwater vulnerability assessment using physically based modelling: from challenges to pragmatic solutions
Publication date :
2008
Event name :
ModelCARE’2007: Sixth Int. Conf on Calibration and Reliability in Groundwater Modelling
Event organizer :
IAHS
Event place :
Copenhagen, Denmark
Event date :
9-13 september 2007
By request :
Yes
Audience :
International
Main work title :
Calibration and Reliability in Groundwater Modelling: Credibility in Modelling
Albinet, M. & Margat, J. (1970) Cartographie de la vulnérabilité à la pollution des nappes d'eau souterraines. (Mapping aquifer vulnerability to pollution) in French. Bull. BRGM 2(3-4), 13-22.
Aller, L., Bennett, T., Lehr, J., Petty, R. & Hackett, G. (1987) DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035. National Water Well Association, Ada, Oklahoma, USA.
Beven, K. & Germann, P. (1981) Water flow in soil macropores. 2. A combined flow model. J. Soil Sci. 32, 15-29.
Brooks, N. (2003) Vulnerability, risk and adaptation: a conceptual framework. Working Paper 38. Tyndall Centre for Climate Change Research, Norwich, UK.
Brouyère, S., Dassargues, A. & Hallet, V. (2004) Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. J. Contam. Hydrol 72, 135-164.
Brouyère, S., Jeannin, P.-Y., Dassargues, A., Goldscheider, N., Popescu, I. C., Sauter, M., Vadillo, I. & Zwahlen, F. (2001) Evaluation and validation of vulnerability concepts using a physically based approach. In: Proc. 7th Conf. on Limestone Hydrology and Fissured Media. Sci. Tech. Envir., Mem. H.S. 13, 67-72. Université de Franche-Comté, Besançon, France.
Chen, C. & Wagenet, R. J. (1992) Simulation of water and chemicals in macropore soils. 2. Application of linear filter theory. J. Hydrol. 130, 127-149.
Civita, M. & De Maio, M. (1997) SINTACS - Un sistema parametrico per la valutazione e la cartografia della vulnerabilita degli acquiferi all'inquinamento. Metodologia & automatizzazione. Collana "Quaderni di Tecniche di Protezione Ambientale", 60, 208p.
Doerfliger, N., Jeannin, P. Y. & Zwahlen, F. (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 39(2), 165-176.
Frind, E. O., Molson, J. W. & Rudolph, D. L. (2006) Well vulnerability: A quantitative approach for source water protection. Ground Water 44(5), 732-742.
Füssel, H.-M. (2007) Vulnerability: A generally applicable conceptual framework for climate change research. Global Environ. Change 17, 155-167.
Gardin, N., Wojda, P. & Brouyère, S. (2006) Stress factors and generalized physically based groundwater vulnerability assessment. FP6 GABARDINE EU project - DL 43 (unpublished).
Gogu, R. & Dassargues, A. (2000) Current and future trends in groundwater vulnerability assessment. Environ. Geol. 39(6), 549-559.
Gogu, R., Hallet, V. & Dassargues, A. (2003) Comparison between aquifer vulnerability assessment techniques. Application to the Neblon river basin (Belgium). Environ. Geol. 44(8), 881-892.
Goldscheider, N., Klute, M., Sturm, S. & Hötzl, H. (2000) The PI method - a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z. Angew. Geol. 46(3), 157-166.
Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L. & Matson, P. A. (2003) A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environ. Change 13, 255-267.
Popescu, I. C., Dachy, M., Brouyere, S. & Dassargues, A. (2004) Tests d'une méthode de cartographie de la vulnérabilité intrinsèque applicable aux nappes aquiferes de la Région Wallonne. Application à l'aquifère calcaire du Néblon, (Test of an intrinsic vulnerability mapping technique for application to aquifers of the Walloon Region. Application to the Néblon limestone aquifer, in French), DGRNE Walloon Region.
Therrien, R. & Sudicky, E. (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretelyfractured porous media. J. Contam. Hydrol. 23, 1-44.
Turner, B. L., Il., Kaspersion, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A. L., Martello, M. L., Polesky, C., Publisher, A. & Schiller, A. (2003) A framework for vulnerability analysis in sustainable science. PNAS 100(14), 8074-8079.
US EPA (1993) Guidelines for delineation of wellhead protection areas. EPA-440/5-93-001.
Vrba, J. & Zaporozec, A. (1994) Guidebook on Mapping Groundwater Vulnerability. International Contributions to Hydrology. H. Heise Publishing, Hanover, Germany.