vasculaires tumorales; flux sanguins des tumeurs; le tonus vasculaire; endothéline; chimiothérapie; administration de médicaments; tumor vessel; tumor blood flow; vascular tone; endothelin; chemotherapy; drug delivery
Abstract :
[fr] Maturation de la vascularisation tumorale implique le recrutement de péricytes qui protègent les tubes endothéliales provenant de diverses contraintes, y compris les médicaments anti-angiogéniques. Mural cells also provide mature tumor blood vessels with the ability to either relax or contract in response to substances present in the tumor microenvironment. cellules murale également fournir d'âge mûr vaisseaux sanguins des tumeurs avec la possibilité de détendre ou se contracter en réponse à des substances présentes dans le microenvironnement de la tumeur. The observed cyclic alterations in tumor blood flow and the associated deficit in chemotherapeutic drug delivery could in part arise from this vasomodulatory influence. To test this hypothesis, we focused on endothelin-1 (ET-1), which, besides its autocrine effects on tumor cell growth, is a powerful vasoconstrictor. Les cycliques altérations observées dans la circulation sanguine des tumeurs et le déficit lié à la livraison de médicaments chimiothérapeutiques pourrait en partie résulter de cette influence vasomodulatory. Pour tester cette hypothèse, nous nous sommes concentrés sur l'endothéline-1 (ET-1), qui, outre ses effets sur la tumeur autocrine la croissance cellulaire, est un puissant vasoconstricteur. We first document that an ET A receptor antagonist induced relaxation of microdissected tumor arterioles and selectively and quantitatively increased tumor blood flow in experimental tumor models. Nous premier document qu'un antagoniste des récepteurs ET A la relaxation induite par des artérioles tumeur microdisséquées et sélectivement et quantitativement l'augmentation du débit sanguin tumorale dans des modèles expérimentaux de tumeurs. We then combined dye staining of functional vessels, fluorescent microsphere-based mapping, and magnetic resonance imaging to identify heterogeneities in tumor blood flow and to examine the reversibility of such phenomena. Nous avons ensuite combiné de la coloration des vaisseaux fonctionnels, fluorescent à base de microsphères de cartographie et d'imagerie par résonance magnétique pour identifier les hétérogénéités du débit sanguin des tumeurs et d'examiner la réversibilité de ces phénomènes. Data from all these techniques concurred to show that administration of an ET A receptor antagonist could reduce the extent of underperfused tumor areas, proving the key role of vessel tone variations in tumor blood flow heterogeneity. Les données de toutes ces techniques d'accord pour montrer que l'administration d'un antagoniste des récepteurs ET A pourrait réduire l'étendue des zones tumorales underperfused, ce qui prouve le rôle clé du navire variations des flux de ton hétérogénéité sanguins des tumeurs. We also provide evidence that ET A antagonist administration could, despite an increase in tumor interstitial fluid pressure, improve access of cyclophosphamide to the tumor compartment and significantly influence tumor growth. Nous avons également fournir la preuve que l'administration antagoniste ET A pourrait, en dépit d'une augmentation de la tumeur interstitielle pression d'un fluide, d'améliorer l'accès de cyclophosphamide dans le compartiment des tumeurs et une influence significative sur la croissance tumorale. In conclusion, tumor endogenous ET-1 production participates largely in the temporal and spatial variations in tumor blood flow. En conclusion, une tumeur ET-1 endogène de production participe largement à l'espace et les variations temporelles du flux sanguin tumoral. ET A antagonist administration may wipe out such heterogeneities, thus representing an adjuvant strategy that could improve the delivery of conventional chemotherapy to tumors. ET Une administration antagoniste peut effacer ces hétérogénéités, ce qui représente une stratégie adjuvant qui pourraient améliorer la prestation de la chimiothérapie conventionnelle des tumeurs. [Mol Cancer Ther 2006;5(6):1620–7] [Cancer Mol Il 2006; 5 (6) :1620-7] [en] Maturation of tumor vasculature involves the recruitment of pericytes that protect the endothelial tubes from a variety of stresses, including antiangiogenic drugs. Mural cells also provide mature tumor blood vessels with the ability to either relax or contract in response to substances present in the tumor microenvironment. The observed cyclic alterations in tumor blood flow and the associated deficit in chemotherapeutic drug delivery could in part arise from this vasomodulatory influence. To test this hypothesis, we focused on endothelin-1 (ET-1), which, besides its autocrine effects on tumor cell growth, is a powerful vasoconstrictor. We first document that an ETA receptor antagonist induced relaxation of microdissected tumor arterioles and selectively and quantitatively increased tumor blood flow in experimental tumor models. We then combined dye staining of functional vessels, fluorescent microsphere-based mapping, and magnetic resonance imaging to identify heterogeneities in tumor blood flow and to examine the reversibility of such phenomena. Data from all these techniques concurred to show that administration of an ETA receptor antagonist could reduce the extent of underperfused tumor areas, proving the key role of vessel tone variations in tumor blood flow heterogeneity. We also provide evidence that ETA antagonist administration could, despite an increase in tumor interstitial fluid pressure, improve access of cyclophosphamide to the tumor compartment and significantly influence tumor growth. In conclusion, tumor endogenous ET-1 production participates largely in the temporal and spatial variations in tumor blood flow. ETA antagonist administration may wipe out such heterogeneities, thus representing an adjuvant strategy that could improve the delivery of conventional chemotherapy to tumors. [Mol Cancer Ther 2006;5(6):1620–7]
Disciplines :
Oncology Radiology, nuclear medicine & imaging
Author, co-author :
Martinive, Philippe ; Université Catholique de Louvain - UCL > Unit of Pharmacology and Therapeutics
DE WEVER, Julie; Université Catholique de Louvain - UCL > Unit of Pharmacology and Therapeutics
BOUZIN, Caroline; Université Catholique de Louvain - UCL > Unit of Pharmacology and Therapeutics
BAUDELET, Christine; Université Catholique de Louvain - UCL > Biomedical Magnetic Resonance Unit and Medicinal Chemistry and Radiopharmacy Unit
ONVEAUX, Pierre; Université Catholique de Louvain - UCL > Unit of Pharmacology and Therapeutics
GREGOIRE, Vincent; Center for Molecular Imaging and Experimental Radiotherapy
FERON, Olivier; Université Catholique de Louvain - UCL > Unit of Pharmacology and Therapeutics
Language :
English
Title :
Reversal of temporal and spatial heterogeneities in tumor perfusion identifies the tumor vascular tone as a tunable variable to improve drug delivery
Alternative titles :
[fr] Renversement des hétérogénéités spatiale et temporelle de la perfusion tumorale identifie la tumeur tonus vasculaire comme une variable ajustable pour améliorer la prestation de drogue
Publication date :
June 2006
Journal title :
Molecular Cancer Therapeutics
ISSN :
1535-7163
eISSN :
1538-8514
Publisher :
American Association for Cancer Research, Inc. (AACR), Philadelphia, United States - Pennsylvania
Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-39.
Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004;10:415-27.
Feron O. Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol Sci 2004;25:536-42.
McCarty MF, Liu W, Fan F, et al. Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol Med 2003;9:53-8.
Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103:159-65.
Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003;162:183-93.
Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2000; 60:1388-93.
Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 1979;52:650-6.
Kimura H, Braun RD, Ong ET, et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 1996;56:5522-8.
Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl 1996;27: S247-51.
Baudelet C, Ansiaux R, Jordan BF, Havaux X, Macq B, Gallez B. Physiological noise in murine solid tumours using T2*-weighted gradientecho imaging: a marker of tumour acute hypoxia? Phys Med Biol 2004;49: 3389-411.
Dewhirst MW, Braun RD, Lanzen JL. Temporal changes in PO2 of R3230AC tumors in Fischer-344 rats. Int J Radiat Oncol Biol Phys 1998; 42:723-6.
Chaplin DJ, Hill SA. Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. Br J Cancer 1995;71: 1210-3.
Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL. Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ Res 2001;89:732-9.
Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer 2003;3:110-6.
Bell KM, Prise VE, Chaplin DJ, Wordsworth S, Tozer GM. Vascular response of tumour and normal tissues to endothelin-1 following antagonism of ET(A) and ET(B) receptors in anaesthetised rats. Int J Cancer 1997;73:283-9.
Bell KM, Chaplin DJ, Poole BA, Prise VE, Tozer GM. Modification of blood flow in the HSN tumour and normal tissues of the rat by the endothelin ET(B) receptor agonist, IRL 1620. Int J Cancer 1999;80: 295-302.
Chaplin DJ, Hill SA, Bell KM, Tozer GM. Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol 1998;8: 151-63.
Sonveaux P, Dessy C, Martinive P, et al. Endothelin-1 is a critical mediator of myogenic tone in tumor arterioles: implications for cancer treatment. Cancer Res 2004;64:3209-14.
Taper HS, Woolley GW, Teller MN, Lardis MP. A new transplantable mouse liver tumor of spontaneous origin. Cancer Res 1966;26: 143-8.
Bertram JS, Janik P. Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett 1980;11:63-73.
Volpe JP, Hunter N, Basic I, Milas L. Metastatic properties of murine sarcomas and carcinomas. I. Positive correlation with lung colonization and lack of correlation with s.c. tumor take. Clin Exp Metastasis 1985;3: 281-94.
Sonveaux P, Dessy C, Brouet A, et al. Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J 2002;16: 1979-81.
Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 2005;11:743-50.
Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91-101.
Su MY, Jao JC, Nalcioglu O. Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 1994;32:714-24.
Baudelet C, Gallez B. Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment. Magn Reson Med 2003;49:985-90.
Chaplin DJ, Olive PL, Durand RE. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47:597-601.
Minchinton AI, Durand RE, Chaplin DJ. Intermittent blood flow in the KHT sarcoma-flow cytometry studies using Hoechst 33342. Br J Cancer 1990;62:195-200.
Pigott KH, Hill SA, Chaplin DJ, Saunders MI. Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 1996;40:45-50.
Durand RE, Aquino-Parsons C. Non-constant tumour blood flow-implications for therapy. Acta Oncol 2001;40:862-9.
Mollica F, Jain RK, Netti PA. A model for temporal heterogeneities of tumor blood flow. Microvasc Res 2003;65:56-60.
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995;55:3752-6.
Netti PA, Hamberg LM, Babich JW, et al. Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc Natl Aced Sci U S A 1999;96:3137-42.
Rosano L, Spinella F, Salani D, et al. Therapeutic targeting of the endothelin a receptor in human ovarian carcinoma. Cancer Res 2003;63: 2447-53.
Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992;52:5110-4.