[en] Climatic outputs from the atmospheric general circulation model ECHAM4 coupled to a mixed layer ocean model are used as inputs to the CARAIB global vegetation model to reconstruct the distribution of vegetation and the biosphere carbon stocks over the continents during the Late Miocene (Tortonian). The results show significant changes in the geographical distribution of vegetation during the Late Miocene compared to the present with a reduction of desert areas and an expansion of tropical seasonal forests, which reached temperate latitudes. These changes in vegetation distribution are accompanied by a moderate increase of the total biosphere carbon stock by 159Gt. Sensitivity tests to atmospheric CO2 have also been performed with the vegetation model only, i.e., while keeping constant all climatic variables to their reference Tortonian state. These tests point out the potential importance Of CO2 fertilization both regarding vegetation distribution and biosphere carbon storage. The impact of an atmospheric CO2 decrease (from 280 to 200ppmv) or increase (from 280 to 560ppmv) on the vegetation distribution appears to be at least as large as that of the climate change between the Tortonian and the present, while in terms of carbon storage the impact of atmospheric CO2 is far much larger than the climatic one. Although the actual response of vegetation to CO2 fertilization may be much smaller than its theoretical response in the model, these results emphasize the need to consider atmospheric CO2 as an important parameter for palaeovegetation reconstructions. (c) 2006 Elsevier B.V. All rights reserved.
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Ghislain, Maxime; Université de Liège - ULiège > Département d'Astrophysique, géophysique et océanographie
Otto, Dominique; Université de Liège - ULiège > Département d'Astrophysique, géophysique et océanographie
Micheels, Arne; Eberhard Karls Universität Tübingen > Institut und Museum für Geologie und Paläontologie
Language :
English
Title :
Late Miocene vegetation reconstruction with the CARAIB model
Adams J.M., Faure H., Faure-Denard L., McGlade J.M., and Woodward F.I. Increases in the terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348 (1990) 711-714
Beerling D.J., and Woodward F.I. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years (2001), Cambridge University Press, Cambridge 405 pp.
Berner R.A. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294 (1994) 56-91
Bice K.L., Scotese C.R., Seidov D., and Barron E.J. Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. 0Palaeoclim. Palaeoecol. 161 (2000) 295-310
Boulter M.C., and Manum S.B. A lost continent in temperate Arctic. Endeavour 21 (1997) 105-108
Cerling T.E. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291 (1991) 377-400
Cerling T.E., Harris J.M., MacFadden B.J., Leakey M.G., Quade J., Eisenmann V., and Ehleringer J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 389 (1997) 153-158
Claussen M. On Coupling Global Biome Models with Climate Models. Report 131 (1994), Max-Planck-Institut für Meteorologie, Hamburg
Collatz G.J., Ribas-Carbo M., and Berry J.A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19 (1992) 519-538
Cosgrove B.A., Barron E.J., and Pollard D. A simple interactive vegetation model coupled to the GENESIS GCM. Global Planet. Change 32 (2002) 253-278
Crowley T.J. Ice age terrestrial carbon changes revisited. Global Biogeochem. Cycles 9 (1995) 377-389
De Pury D.G.G., and Farquhar G.D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20 (1997) 537-557
Ding Z.L., and Yang S.L. C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C. Palaeogeogr. Palaeoclim. Palaeoecol. 160 (2000) 291-299
DKRZ Modellbetreuungsgruppe. The ECHAM3 Atmospheric General Circulation Model. Technical Report 6 (1994), Deutsches Klimarechenzentrum, Hamburg 182 pp.
Dutton J.F., and Barron E.J. Miocene to present vegetation changes: a possible piece of the Cenozoic puzzle. Geology 25 (1997) 39-41
Farquhar G.D., von Caemmerer S., and Berry J.A. A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980) 78-90
Fluteau F., Ramstein G., and Besse J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res. 104 (1999) 11995-12018
France-Lanord C., and Derry L.A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390 (1997) 65-67
François L.M., Delire C., Warnant P., and Munhoven G. Modelling the glacial-interglacial changes in the continental biosphere. Global Planet. Change 16-17 (1998) 37-52
François L.M., Goddéris Y., Warnant P., Ramstein G., de Noblet N., and Lorenz S. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chem. Geol. 159 (1999) 163-189
Freeman K.H., and Hayes J.M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6 (1992) 185-198
Gérard J.-C., Nemry B., Francois L., and Warnant P. The interannual change of atmospheric CO2: contribution of subtropical ecosystems?. Geophys. Res. Lett. 26 (1999) 243-246
Goddéris Y., and François L.M. Balancing the Cenozoic carbon and alkalinity cycles: constraints from isotopic records. Geophys. Res. Lett. 23 (1996) 3743-3746
Goudriaan J., and van Laar H.H. Modelling potential crop growth processes, textbook with exercises. Current Issues in Production Ecology vol. 2 (1994), Kluwer Academic Publisher Group, Dordrecht, The Netherlands 256 pp.
Hagemann S., Botzet M., Dümenil L., and Machenhauer B. Derivation of Global GCM Boundary Conditions from 1 Km Land Use Satellite Data. Report 289 (1999), Max-Planck-Institut für Meteorologie, Hamburg
Haxeltine A., and Prentice I.C. Biome3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10 (1996) 693-709
Hoorn C., Ohja T., and Quade J. Palynological evidence for vegetation development and climate change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclim. Palaeoecol. 163 (2000) 133-161
Hubert B., Francois L., Warnant P., and Strivay D. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. J. Hydrol. 212-213 (1998) 317-334
Ivanov D., Ashraf A.R., Mosbrugger V., and Palamarev E. Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr. Palaeoclim. Palaeoecol. 178 (2002) 19-37
Janis C.M., Damuth J., and Theodor J.M. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone?. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7899-7904
Leemans R., and Cramer W. The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. IIASA-Report RR-91-18 (19910), International Institute for Applied Systems Analysis, Laxenburg, Austria
Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18 (1995) 339-355
Maier-Reimer E., Mikolajewicz U., and Crowley T. Ocean general circulation model sensitivity experiment with an open Central American isthmus. Palaeoceanography 5 (1990) 349-366
Matthews E. Global vegetation and land use: new high resolution databases for climate studies. J. Clim. Appl. Meteorol. 22 (1983) 474-487
Melillo J., McGuire A., Kicklighter D., Moore III B., Vorosmarty C., and Schloss A. Global climate change and terrestrial net primary production. Nature 363 (1993) 234-240
Mikolajewicz U., Maier-Reimer E., Crowley T.J., and Kim K.J. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Palaeoceanography 8 (1993) 409-426
Mintz Y., and Walker G. Global fields of soil moisture and surface evapotranspiration derived from observed precipitation and surface air temperature. J. Appl. Meteorol. 32 (1993) 185-188
Nemry B., Francois L.M., Warnant P., Robinet F., and Gérard J.-C. The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic model. J. Geophys. Res. 101 (1996) 7111-7125
Otto D., Rasse D., Kaplan J., Warnant P., and Francois L. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Global Planet. Change 33 (2002) 117-138
Pagani M., Arthur M.A., and Freeman K.H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14 (1999) 273-292
Pearson P.N., and Palmer M.R. Atmospheric carbon dioxide concentrations over the past 600 million years. Nature 406 (2000) 695-699
Prell W.L., and Kutzbach J.E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360 (1992) 647-652
Prentice K.C., and Fung I.Y. The sensitivity of terrestrial carbon storage to climate change. Nature 346 (1990) 48-51
Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A., and Solomon A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19 (1992) 117-134
Ramstein G., Fluteau F., Besse J., and Joussaume S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over past 30 million years. Nature 386 (1997) 788-795
Raymo M.E. Geochemical evidence supporting T.C. Chamberlin's theory of glaciation. Geology 19 (1991) 649-653
Raymo M.E. The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography 9 (1994) 399-404
Raymo M.E., Ruddiman W.F., and Froelich P.N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16 (1988) 649-653
Roeckner E., Arpe K., Bengtsson L., Brinkop S., Dümenil L., Esch M., Kirk E., Lunkeit F., Ponater M., Rockel B., Sausen R., Schlese U., Schubert S., and Windelband M. Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Report 93 (1992), Max-Planck-Institut für Meteorologie, Hamburg 171 pp.
Roeckner E., Arpe K., Bengtsson L., Christoph M., Claussen M., Dümenil L., Esch M., Giorgetta M., Schlese U., and Schulzweida U. The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report 218 (1996), Max-Planck-Institut für Meteorologie, Hamburg 90 pp.
Ruddiman W.F., and Kutzbach J.E. Forcing of late Cenozoic northern hemisphere climate by uplift in southern Asia and the American West. J. Geophys. Res. 94 (1989) 18409-18427
Saxton K.E., Rawls W.J., Romberger J.S., and Papendick R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50 (1986) 1031-1036
Schimel D., Alves D., Enting I., Heimann M., Joos F., Raynaud D., Wigley T., Prather M., Derwent R., Ehhalt D., Fraser P., Sanhueza E., Zhou X., Jonas P., Charlson R., Rodhe H., Sadasivan S., Shine K.P., Fouquart Y., Ramaswamy V., Solomon S., Srinivasan J., Albritton D., Derwent R., Isaksen I., Lal M., and Wuebbles D. Radiative forcing of climate change. In: Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenberg A., and Maskell K. (Eds). Climate Change 1995. The Science of Climate Change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change (1996), Cambridge University Press, Cambridge
Strömberg C.A.E. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeogr. Palaeoclim. Palaeoecol. 177 (2002) 59-75
Thonicke K., Venevsky S., Sitch S., and Cramer W. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecol. Biogeogr. 10 (2001) 661-677
van der Burgh J., Visscher H., Dilcher D.L., and Kürschner W.M. Paleoatmospheric signatures in Neogene fossil leaves. Science 260 (1993) 1788-1790
Warnant, P., 1999. Modélisation du cycle du carbone dans la biosphère continentale à l'échelle globale. PhD Thesis, Université de Liège, Liège.
Warnant P., Francois L., Strivay D., and Gérard J.-C. CARAIB: a global model of terrestrial biological productivity. Global Biogeochem. Cycles 8 (1994) 255-270
Wijk M.V., Dekker S., Bouten W., Bosveld F., Kohsiek W., Kramer K., and Mohren G. Modeling daily gas exchange of a douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiol. 20 (2000) 115-122
Zachos J., Pagani M., Sloan L., Thomas E., and Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (2001) 686-693
Zobler L. A world soil file for global climate modelling. Tech. rep., NASA Goddard Institute for Space Studies (GISS), New York (1986)