[en] A coupled climate-geochemical model of new generation (GEOCLIM) is used to investigate the possible causes of the initiation of snowball glaciations during Neoproterozoic times. This model allows the calculation of the partial pressure of atmospheric CO2 simultaneously with the climate at the continental surface with a rough 2D spatial resolution (10 degrees lat. x 50 degrees long.). We calculate that the breakup of the Rodinia supercontinent, starting 800 Myr ago, results in a global climatic cooling of about 8 degrees C triggered by enhanced consumption of atmospheric CO2 resulting from increased runoff over continental surfaces. This increase in runoff is driven by the opening of oceanic basins resulting in an increase of soil moisture sources close to continental masses. This climatic effect of the supercontinent breakup is particularly strong within the 800-700 Ma interval since all continents are located in the equatorial area, where temperature and runoff conditions optimize the consumption of CO2 through weathering processes. However, this effect alone is insufficient to trigger snowball. We propose that the efficient weathering of fresh basaltic surfaces that erupted during the Rodinia breakup, and were transported to the humid equatorial area through continental plate motion, contributed the necessary CO2 sink that triggered the ca. 730-Ma Sturtian glacial event. Simulations of the GEOCLIM model for the ca 580-Ma Gaskiers ice age, where all continents are centered on the South Pole, shows that no snowball glaciation can be initiated. The calculated CO2 partial pressure remains above 1000 ppmv, while a threshold of less than 80 ppmv is required to initiate a snowball glaciation. At that time, a polar configuration does not allow the onset of total glaciation. Nevertheless, a regional glaciation is simulated by the GEOCLIM when the climatic and geochemical (i.e. weathering related) effects of the Pan-African orogeny (similar to 600 Ma) are taken into account. Finally, the question of the role of the paleogeographic setting in the Marinoan snowball event (similar to 635 Ma) is still an open question, since no reliable Marinoan paleogeographic reconstruction exists due to the paucity of paleomagnetic data.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Godderis, Yves; CNRS/Université Paul-Sabatier > LMTG, Observatoire Midi-Pyrénées
Donnadieu, Yannick; CNRS/CEA > LSCE
Dessert, Celine; University of Cambridge, UK > Department of Earth Sciences
Dupre, Bernard; CNRS/Université Paul-Sabatier > LMTG, Observatoire Midi-Pyrénées
Fluteau, Frederic; IPGP, Paris
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Meert, Joseph; University of Florida > Department of Geological Sciences
Nedelec, Anne; CNRS/Université Paul-Sabatier > LMTG, Observatoire Midi-Pyrénées
Ramstein, Gilles; CNRS/CEA > LSCE
Language :
English
Title :
Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations
Alternative titles :
[fr] Modélisation couplée du cycle du carbone et du climat au Néoprotérozoïque : liens entre la dislocation du supercontinent Rodinia et les glaciations majeures
Barfod G.H., Albarède F., Knoll A.H., Xiao S., et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201 (2002) 203-212
Berner R.A., and Kothavala Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301 (2001) 182-204
Berner R.A., Lasaga A.C., and Garrels R.M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 millions years. Am. J. Sci. 284 (1983) 641-683
Bowring S.A., Myrow P., Landing E., and Ramenzani J. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. NASA Astrobiology Institute General Meeting. Arizona state University, Tempe, Arizona (2003) 113
Dessert C., Dupré B., François L.-M., Schott J., et al. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188 3-4 (2001) 459-474
Dessert C., Dupré B., Gaillardet J., François L.M., et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202 (2003) 257-273
Donnadieu Y., Goddéris Y., Ramstein G., Nédelec A., et al. Snowball Earth triggered by continental breakup through changes in runoff. Nature 428 (2004) 303-306
Donnadieu Y., Ramstein G., Fluteau F., Roche D., et al. The impact of atmospheric and oceanic heat transport on the sea-ice-albedo instability during the Neoproterozoic. Clim. Dynam. 22 2-3 (2004) 293-306
Y. Donnadieu, G. Ramstein, Y. Goddéris, F. Fluteau, Global tectonic setting and climate of the Late Neoproterozoic: a climate-geochemical coupled study, in: G. Jenkins, M. McMenamin, L. Sohl, C. McKay (Eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate, in: Geophys. Monogr., 146, 2004, p. 200.
Evans D.A.D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300 (2000) 347-433
Eyles N., and Januszczak N. 'Zipper-rift': a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci. Rev. 65 (2004) 1-73
François L.M., Walker J.C.G., and Opdyke B.N. The history of global weathering and the chemical evolution of the ocean-atmosphere system. In: Takahashi E., Jeanloz R., and Dubie D. (Eds). Evolution of the Earth and Planets vol. 14 (1993), International Union of Geodesy and Geophysics and the American Geophysical Union, Washington 143-159
Goddéris Y., and François L.-M. The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges. Chem. Geol. 126 (1995) 169-190
Goddéris Y., and Joachimski M.M. Global change in the Late Devonian: modelling the Frasnian-Famennian short-term carbon isotope excursions. Palaeogeogr., Palaeoclimatol., Palaeoecol. 202 (2004) 309-329
Goddéris Y., Nédélec A., Donnadieu Y., Dupré B., et al. The Sturtian glaciation: Fire and ice. Earth Planet. Sci. Lett. 211 (2003) 1-12
Halverson G.P., Maloof A.C., and Hoffman P.F. The Marinoan glaciation (Neoproterozoic) in Northeast Svalbard. Basin Res. 16 (2004) 297-324
Harland W.B., and Rudwick M.S. The great infra-Cambrian ice age. Sci. Am. 211 (1964) 28-36
Hoffmann K.-H., Condon D.J., Bowring S.A., and Crowley J.L. U-Pb zircon date from the Neoproterozoic Ghaub formation, Namibia: constraints on Marinoan glaciation. Geology 32 (2004) 817-820
Hoffman P.F., and Maloof A.C. Glaciation: the snowball theory still holds water. Nature 397 (1999) 384
Hoffman P.F., and Schrag D.P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14 (2002) 129-155
Hoffman P.F., Kaufman A.J., Halverson G.P., and Schrag D.P. A Neoproterozoic Snowball Earth. Science 281 (1998) 1342-1346
Hyde W.T., Crowley T.J., Baum S.K., and Peltier W.R. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice sheet model. Nature 405 (2000) 425-429
Kennedy M.J., Christie-Blick N., and Prave A.R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena. Geology 29 (2001) 1135-1138
Kirschvink J.L. Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf J.W., and Klein C. (Eds). The Proterozoic Biosphere (1992), Cambridge University Press, Cambridge 51-52
Knoll A.H., Walter M.R., Narbonne G.M., and Christie-Blick N. A new period for the geologic time scale. Science 305 (2004) 621-622
Levrard B., and Laskar J. Climate friction and the Earth's obliquity. Geophys. J. Inter. 154 (2003) 970-990
Li Z.X., Li X.H., Kinny P.D., and Wang J. The break up of Rodinia: did it start with a mantle plume beneath South China?. Earth Planet. Sci. Lett. 173 (1999) 171-181
Li Z.X., Li X.H., Kinny P.D., Wang J., et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 2286 (2003) 1-25
Li Z.X., Evans D.A.D., and Zhang S. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth Planet. Sci. Lett. 220 (2004) 409-421
Macouin M., Besse J., Ader M., Gilder S., et al. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the 'snowball Earth' hypothesis. Earth Planet. Sci. Lett. 224 (2004) 387-398
Meert J.G. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362 (2003) 1-40
Meert J.G., and Powell C.M. Assembly and break-up of Rodinia: introduction to the special volume. Precamb. Res. 110 (2001) 1-8
Meert J.G., and Torsvik T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375 (2003) 261-288
Meert J.G., and Torsvik T.H. Paleomagnetic constraints on Neoproterozoic 'Snowball Earth' continental reconstructions. In: Jenkins G.S., McMenamin M., McKay C.P., and Sohl L. (Eds). The extreme Proterozoic: Geology, Geochemistry, and Climate. Geophys. Monogr. vol. 146 (2004) 5-11
Métivier F., Gaudemer Y., Tapponnier P., and Klein M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137 (1999) 280-318
Millot R., Gaillardet J., Dupré B., and Allègre C.J. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196 (2002) 83-98
Oliva P., Viers J., and Dupré B. Chemical weathering in granitic crystalline environments. Chem. Geol. 202 (2003) 225-256
Pavlov A.A., Hurtgen M.T., Kasting J.F., and Arthur M.A. Methane-rich Proterozoic atmosphere. Geology 31 (2003) 87-90
Petoukhov V., Ganopolski A., Brovkin V., Claussen M., et al. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim. Dynam. 16 (2000) 1-17
Poulsen C.J., Jacob R.L., Pierrehumbert R.T., and Huynh T.T. Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett. 29 (2002)
Poulsen C.J., Pierrehumbert R.T., and Jacob R.L. Impact of ocean dynamics on the simulation of the Neoproterozoic 'snowball Earth'. Geophys. Res. Lett. 28 (2001) 1575-1578
Rice A.H.N., Halverson G.P., and Hoffman P.F. Three for the Neoproterozoic: Sturtian, Marinoan and Varangerian glaciations. Geophys. Res. Abstr. 5 (2003) 11425
Schrag D.P., Berner R.A., Hoffman P.F., and Halverson G.P. On the initiation of a Snowball Earth. Geochem. Geophys. Geosyst. 3 (2002) 1036 10.1029/2001GC000219
Tajika E. Faint young sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet. Sci. Lett. 214 (2003) 443-453
Thomson M.D., and Bowring S.A. Age of the Squantum 'tillite', Boston basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. Am. J. Sci. 300 (2000) 630-655
Trompette R. Gondwana evolution; its assembly at around 600 Ma. C. R. Acad. Sci. 330 Ser. IIa (2000) 305-315
Walker J.C.G., Hays P.B., and Kasting J.F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86 (1981) 9776-9782
Williams G.E. Late Precambrian glacial climate and the Earth's obliquity. Geol. Mag. 112 (1975) 441-465