An Amplitude Finite Element Formulation for Multiple-Scattering by a Collection of Convex Obstacles
Geuzaine, Christophe ; Vion, Alexandre ; Gaignaire, Roman et al. 2010 • In IEEE Transactions on Magnetics, 46 (8), p. 2963-2966 Peer Reviewed verified by ORBi
Finite element methods; iterative techniques; multiple electromagnetic scattering; short wave problem
Abstract :
[en] We present a multiple-scattering solver for nonconvex geometries obtained as the union of a finite number of convex obstacles. The algorithm is a finite element reformulation of a high-frequency integral equation technique proposed previously. It is based on an iterative solution of the scattering problem, where each iteration leads to the resolution of a single scattering problem in terms of a slowly oscillatory amplitude.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Vion, Alexandre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Gaignaire, Roman ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Dular, Patrick ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
V Sabariego, Ruth ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
An Amplitude Finite Element Formulation for Multiple-Scattering by a Collection of Convex Obstacles
Geuzaine, C., Bruno, O., Reitich, F., On the solution of multiple-scattering problems (2005) IEEE Trans. Magn., 41 (5), pp. 1488-1491. , May
Bruno, O., Geuzaine, C., Monro Jr., J., Reitich, F., Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case (2004) Philosoph. Trans. Roy Soc. Ser. A, Math., Phys., Eng., Sci., 362 (1816), pp. 629-645
Balabane, M., Boundary decomposition for helmholtz and maxwell equations I: Disjoint sub-scatterers (2004) Asymptotic Anal., 38 (1), pp. 1-10
Tai, C.T., An iterative method of solving a system of linear equations and its physical interpretation from the point of view of scattering theory (1970) IEEE Trans. Antennas Propagat., pp. 713-714. , Sep
Antoine, X., Geuzaine, C., Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models J. Comput. Phys., , available online
Geuzaine, C., Bedrossian, J., Antoine, X., An amplitude formulation to reduce the pollution error in the finite element solution of time-harmonic scattering problems (2008) IEEE Trans. Magn., 44 (6), pp. 782-785. , Jun
Kriegsmann, G.A., Taflove, A., Umashankar, K., A new formulation of electromagnetic wave scattering using the on-surface radiation condition method (1987) IEEE Trans. Antennas Propagat., 35, pp. 153-161
Bayliss, A., Gunzburger, M., Turkel, E., Boundary conditions for the numerical solution of elliptic equations in exterior regions (1982) SIAM J. Appl. Math., 42, pp. 430-451
Geuzaine, C., Meys, B., Dular, P., Henrotte, F., Legros, W., A Galerkin projection method for mixed finite elements (1999) IEEE Trans. Magn., 35 (3), pp. 1438-1441. , Mar