[en] The structure and motility of isolated rat primary (I) Schwann cells (SC) have been compared to that of subcultured (II) SC during and after mitotic stimulation. I SC contain myelin components which persist for 2 weeks in serum-free medium while they rapidly disappear in medium containing serum and high glucose concentration. These components were never detected in II SC. Both I SC and II SC after their mitotic phase are spindle-shaped, contain many intermediate and actin filaments, have no basement membrane but show intense migratory and undulatory activities. Rare fibroblasts in I cultures are recognized by their extremely variable shape, the presence of Thy 1.1 antigen in their membrane and their intense edge ruffling alternating with abrupt translocation. In contrast, I SC movements consist of intracellular translocation of nuclei along SC processes, which retract and extend constantly, and in slow rhythmic undulation episodes (2.3 ± 0.2/min) alternating with migration at 135 ± 50 μ/h. The total number of these episodes per day in serum-free medium is rigorously identical for different cells (166.3 ± 0.2) and this uniformity of frequency suggests a genotypic basis. Cycles, consisting of an undulation episode followed by a resting interval, have mean durations of 8.6 ± 4.1 min and a sharp peak of occurrence at 6 min, with exponential distribution of the longer periods. Motility of II SC is considerably inhibited during mitotic stimulation by cholera toxin and a pituitary extract while SC phenotype has changed to a flat multipolar cell with prominent Golgi and ribosomes. Migration is reduced to 24 ± 2 μ/h and only 2% of the SC show pulsations of the same periodicity as the I SC undulations. A dramatic increase in pulsation frequency occurs 6–12 h after removal of mitogenic factors when 80% of II SC start pulsating twice as fast for 2–3 days. When mitoses cease, SC quickly recover their SC phenotype with rhythmic undulations while migration speed increased to 92 ± 20 μ/h. Thus, in spite of dramatic modification of shape, structure and behavior during mitotic stimulation, SC subsequently recover their unique motility pattern which might be essential for their myelinating function
Disciplines :
Immunology & infectious disease
Author, co-author :
Dubois-Dalcq, Monique; National Institutes of Health - NIH - Bethesda, MD
Rentier, Bernard ; Université de Liège - ULiège > National Institutes of Health - NIH - Bethesda, MD
Baron-Vanevercooren, Anne
Burge, Boyce W.; National Institutes of Health - NIH - Bethesda, MD
Language :
English
Title :
Structure and behavior of rat primary and secondary Schwann cells in vitro
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.