[en] In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the IRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted LIS to show that at least one member of each IRNA isoacceptor family is transcribed and correctly processed in vivo. A short stretch of T residues known to be a signal for termination of polymerase III transcription was found downstream of most IRNA genes. It allowed us to propose that the vast majority of the IRNA genes are expressed and to confirm that numerous IRNA genes separated by short spacers are indeed cotranscribed. Interestingly, in silico analyses and hybridization experiments show that the cellular IRNA abundance is correlated with the number of tRTNA genes and is adjusted to the codon usage to optimize translation efficiency. Finally, we studied the origin of SINEs, short interspersed elements related to tRNAs, whose presence in Chlamydomonas is exceptional. Phylogenetic analysis strongly suggests that tRNA(Asp)-related SINEs originate front a prokaryotic-type IRNA either horizontally transferred from a bacterium or originally present in mitochondria or chloroplasts.
Disciplines :
Microbiology
Author, co-author :
Cognat, Valerie
Deragon, Jean*-Marc
Vinogradova, Elizaveta
Salinas, Thalia
Remacle, Claire ; Université de Liège - ULiège > Département des sciences de la vie > Génétique
Marechal-Drouard, Laurence
Language :
English
Title :
On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes
Publication date :
2008
Journal title :
Genetics
ISSN :
0016-6731
eISSN :
1943-2631
Publisher :
Genetics Society of America, Baltimore, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
ARDELL, D. H., and S. G. ANDERSSON, 2006 TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic Acids Res. 34: 893-904.
ARNAUD, P., Y. YUKAWA, L. LAVIE, T. PELISSIER, M. SUGIURA et al., 2001 Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Plant J. 26: 295-305.
BULMER, M., 1987 Coevolution of codon usage and transfer RNA abundance. Nature 325: 728-730.
DELAGE, L., A. M. DUCHENE, M. ZAEPFEL and L. MARECHAL-DROUARD, 2003 The anticodon and the D-domain sequences are essential determinants for plant cytosolic tRNA(Val) import into mitochondria. Plant J. 34: 623-633.
DERAGON, J. M., and X. ZHANG, 2006 Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst. Biol. 55: 949-956.
DONG, H., L. NILSSON and C. G. KURLAND, 1996 Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260: 649-663.
DURET, L., 2000 tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16: 287-289.
FLEURDEPINE, S., J. M. DERAGON, M. DEVIC, J. GUILLEMINOT and C. BOUSQUET-ANTONELLI, 2007 A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res. 35: 3306-3321.
GLOVER, K. E., D. F. SPENCER and M. W. GRAY, 2001 Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J. Biol. Chem. 276: 639-648.
HAEUSLER, R. A., and D. R. ENGELKE, 2006 Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res. 34: 4826-4836.
HARRIS, E. H., 1989 The Chamydomonas Sourcebook. Academic Press, San Diego.
HUDELOT, C., V. GOWRI-SHANKAR, H. JOW, M. RATTRAY and P. G. HIGGS, 2003 RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol. Phylogenet. Evol. 28: 241-252.
JURKA, J., O. KOHANY, A. PAVLICEK, V. V. KAPITONOV and M. V. JURKA, 2005 Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons. Cytogenet. Genome. Res. 110: 117-123.
KASS, D. H., M. A. BATZER and P. L. DEININGER, 1995 Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol. Cell. Biol. 15: 19-25.
KRAMEROV, D. A., and N. S. VASSETZKY, 2005 Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247: 165-221.
KRUSZKA, K., F. BARNECHE, R. GUYOT, J. AILHAS, I. MENEAU et al., 2003 Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J. 22: 621-632.
LEBLANC, A. J., A. E. YERMOVSKY KAMMERER and S. L. HAJDUK, 1999 A nuclear encoded and mitochondrial imported dicistronic tRNA precursor in Trypanosoma brucei. J. Biol. Chem. 274: 21071-21077.
LENOIR, A., B. COURNOYER, S. WARWICK, G. PICARD and J. M. DERAGON, 1997 Evolution of SINE S1 retroposons in Cruciferae plant species. Mol. Biol. Evol. 14: 934-941.
LIN, Z., O. NOMURA, T. HASYAHSI, Y. WADA and H. YASUE, 2001 Characterization of a SINE species from vicuma and its distribution in animal species including the family Camelidae. Mamm. Genome 12: 305-308.
MARÉCHAL-DROUARD, L., P. GUILLEMAUT, A. COSSET, M. ARBOGAST, F. WEBER et al., 1990 Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res. 18: 3689-3696.
MARÉCHAL-DROUARD, L., I. SMALL, J.-H. WEIL and A. DIETRICH, 1995 Transfer RNA import into plant mitochondria, pp. 310-327 in Mitochondrial Biogenesis and Genetics, Vol. 260, edited by G. M. ATTARDI and A. CHOMYM. Spectrum Publisher Services, New York.
MATSUMOTO, K., K. MURAKAMI and N. OKADA, 1986 Gene for lysine tRNA1 may be a progenitor of the highly repetitive and transcribable sequences present in the salmon genome. Proc. Natl. Acad. Sci. USA 83: 3156-3160.
MERCHANT, S. S., S. E. PROCHNIK, O. VALLON, E. H. HARRIS, S. J. KARPOWICZ et al., 2007 The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250.
MOTTRAM, J. C., S. D. BELL, R. G. NELSON and J. D. BARRY, 1991a tRNAs of Trypanosomabrucei. Unusual gene organization and mitochondrial importation. J. Biol. Chem. 266: 18313-18317.
MOTTRAM, J. C., Y. SHAFI and J. D. BARRY, 1991b Sequence of a tRNA gene cluster in Trypanosoma brucei. Nucleic Acids Res. 19: 3995.
OKADA, N., and K. OHSHIMA, 1995 Evolution of tRNA-derived SINEs, pp. 61-80 in The Impact of Short Interspersed Elements (SINEs) on the Host Genome, edited by R. MARAIA. Landes Company/Springer, Austin, TX.
OKADA, N., I. M. HAMADA, I. OGIWARA and K. PHSHIMA, 1997 SINEs and LINEs share common 3′ sequences: a review. Gene 205: 229-243.
PFITZINGER, H., P. GUILLEMAUT, J. H. WEIL and D. T. N. PILLAY, 1987 Adjustment of the tRNA population to the codon usage in chloroplasts. Nucleic Acids Res. 15: 1377-1386.
RAO, M., B. A. CARLSON, S. V. NOVOSELOV, D. P. WEEKS, V. N. GLADYSHEV et al., 2003 Chlamydomonas reinhardtii selenocysteine tRNA[Ser]Sec. RNA 9: 923-930.
ROZHDESTVENSKY, T. S., A. M. KOPYLOV, J. BROSIUS and A. HUTTENHOFER, 2001 Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stemloop structure. RNA 7: 722-730.
SCHNEIDER, A., and L. MARECHAL-DROUARD, 2000 Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol. 10: 509-513.
SUN, F. J., S. FLEURDEPINE, C. BOUSQUET- ANTONELLI, G. CAETANO-ANOLLES and J. M. DERAGON, 2007 Common evolutionary trends for SINE RNA structures. Trends Genet. 23: 26-33.
TYC, K., Y. KIKUCHI, M. KONARSKA, W. FILIPOWICZ and H. J. GROSS, 1983 Ligation of endogenous tRNA 3′ half molecules to their corresponding 5′ halves via 2′-phosphomonester,3′5′-phosphodiester bonds in extracts of Chlamydomonas. EMBO J. 2: 605-610.
VINCENTI, S., V. DE CHIARA, I. BOZONI and C. PRESUTTI, 2007 The position of yeast snoRNA-coding regions within host introns is essential for their biogenesis and for efficient splicing of the host pre-mRNA. RNA 13: 138-150.
WICKER, T., F. SABOT, A. HUA-VAN, J. L. BENNETZEN, P. CAPY et al., 2007 A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973-982.
WOLIN, S. L., and T. CEDERVALL, 2002 The La protein. Annu. Rev. Biochem. 71: 375-403.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.