Article (Scientific journals)
An analysis of mixed integer linear sets based on lattice point free convex sets
Andersen, Kent; Louveaux, Quentin; Weismantel, Robert
2010In Mathematics of Operations Research, 35 (1), p. 233-256
Peer Reviewed verified by ORBi
 

Files


Full Text
An_Analysis_ALW.pdf
Publisher postprint (415.21 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
mixed-integer sets; lattice-point-free polyhedra; cutting planes
Abstract :
[en] The set obtained by adding all cuts whose validity follows from a maximal lattice free polyhedron with max-facet-width at most w is called the w th split closure. We show the w th split closure is a polyhedron. This generalizes a previous result showing this to be true when w = 1. We also consider the design of finite cutting plane proofs for the validity of an inequality. Given a measure of “size” of a maximal lattice free polyhedron, a natural question is how large a size s of a maximal lattice free polyhedron is required to design a finite cutting plane proof for the validity of an inequality. We characterize s based on the faces of the linear relaxation of the mixed integer linear set.
Disciplines :
Mathematics
Author, co-author :
Andersen, Kent;  Otto-von-Guericke Universität Magdeburg > Institut für Mathematische Optimierung
Louveaux, Quentin  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Optimisation discrète
Weismantel, Robert;  Otto-von-Guericke Universituat Magdeburg > Institut für Mathematische Optimierung
Language :
English
Title :
An analysis of mixed integer linear sets based on lattice point free convex sets
Publication date :
February 2010
Journal title :
Mathematics of Operations Research
ISSN :
0364-765X
eISSN :
1526-5471
Publisher :
Institute for Operations Research (INFORMS)
Volume :
35
Issue :
1
Pages :
233-256
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 January 2010

Statistics


Number of views
131 (18 by ULiège)
Number of downloads
221 (8 by ULiège)

Scopus citations®
 
30
Scopus citations®
without self-citations
24
OpenCitations
 
26
OpenAlex citations
 
44

Bibliography


Similar publications



Contact ORBi