hydrogeological conditions; influence on gravity measurements; long periodic gravity variations; Membach gravimetry station
Abstract :
[en] A comprehensive hydrogeological investigation regarding the influence of variations in local and regional water mass on superconducting gravity measurements is presented for observations taken near the geodynamic station of Membach, Belgium. Applying a regional water storage model, the gravity contribution due to the elastic deformation of the Earth was derived. In addition, the Newtonian gravity effect induced by the local water mass variations was calculated, using soil moisture observations taken at the ground surface (about 48 m above the gravimeters). The computation of the gravimetric effect is based on a digital elevation model with spatially discretized rectangular prisms. The obtained results are compared with the observations of a superconducting gravimeter (SG). We find that the seasonal variations can be reasonably well predicted with the regional water storage model and the local Newtonian effects. Shorter-period effects depend on the local changes in hydrology. This result shows the sensitivity of SG observations to very local water storage changes.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Van Camp, Michel; Observatoire Royal de Belgique - ORB > Seismologie
Vanclooster, Marnik; Université Catholique de Louvain > Environmental Sciences and Land Use Planning
Crommen, O.; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie et Géologie de l'Environnement
Petermans, T.; Observatoire Royal de Belgique - ORB > Séismologie
Verbeeck, K.; Observatoire Royal de Belgique - ORB > Séismologie
Meurers, B.; University of Vienna > Institute of Meteorology and Geophysics
van Dam, T.; European Center for Geodynamics and Seismology and Natural History Museum of Luxembourg > Géophysique
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations
Publication date :
2006
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Abe, M., S. Takemoto, Y. Fukuda, T. Higashia, Y. Imanishi, S. Iwano, S. Ogasawara, Y. Kobayashi, S. Dwipa, and D. Sury Kusuma (2006), Hydrological effects on the superconducting gravimeter observation in Bandung, J. Geodyn., 41(1-3), 288-295.
Banerjee, B., and S. P. Das Gupta (1977), Gravitational attraction of rectangular parallelepiped, Geophysics, 42, 1053-1055.
Bower, D. R., and N. Courtier (1998), Precipitation effects on gravity measurements at the Canadian absolute gravity site, Phys. Earth Planet. Inter., 106, 353-369.
Boy, J.-P., and J. Hinderer (2006), Study of the seasonal gravity signal in superconducting gravimeter data, J. Geodyn., 41, 227-233.
Boy, J.-P., J. Hinderer, and P. Gegout (2002), Reduction of surface gravity data from global atmospheric pressure loading, Geophys. J. Int., 149, 534-545.
Campbell Scientific (2002), CS616 & CS625 Water Content Reflectometers, Loughborough, U. K.
Crossley, D. J., and S. Xu (1998), Analysis of superconducting gravimeter data from Table Mountain, Colorado, Geophys. J. Int., 135, 835-844.
Crossley, D., J. Hinderer, and J.-P. Boy (2005), Time variation of the European gravity field from superconducting gravimeters, Geophys. J. Int., 161, 257-264.
Fetter, C. W. (2001), Applied Hydrogeology, 4th ed., 598 pp., Prentice-Hall, Upper Saddle River, N. J.
Francis, O., M. Van Camp, T. van Dam, R. Warnant, and M. Hendrickx (2004), Indication of the uplift of the Ardenne in long term gravity variations in Membach (Belgium), Geophys. J. Int., 158(1), 346-352.
Goodkind, J. M. (1999), The superconducting gravimeter, Rev. Sci. Instrum., 70(11), 4131-4152.
Hasan, S., P. A. Troch, J. Boll, and C. Kroner (2006), Modeling the hydrological effect on local gravity at Moxa, Germany, J. Hydromet., 7(3), 346-354.
Hinderer, J., and D. Crossley (2000), Time variations in gravity and inferences of the Earth's structure and dynamics, Surv. Geophys., 21, 1-45.
Hupet, F., and M. Vanclooster (2002), Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field, J. Hydrol., 261, 86-101.
Hupet, F., and M. Vanclooster (2005), Micro-variability of hydrological processes at the maize row scale: Implication for soil water content measurements and evapotranspiration estimates, J. Hydrol., 303, 247-270.
Imanishi, Y., K. Kokubo, and H. Tatehata (2006), Effect of underground water on gravity observation at Matsushiro, Japan, J. Geodyn., 41(1-3). 221-226.
Jacobsen, O. H., and P. Schjonning (1995), Comparison of TDR calibration functions for soil water determination, in Proceedings of the Symposium: Time-Domain Reflectometry Applications in Soil Science, edited by L. W. Petersen and O. H. Jacobsen, pp. 25-33, Dan. Inst. of Plant and Soil Sci., Lyngby, Denmark.
Kroner, C. (2001), Hydrological effects on gravity data of the geodynamic observatory Moxa, J. Geod. Soc. Jpn., 47(1), 353-358.
Kroner, C., and T. Jahr (2006), Hydrological experiments at Moxa observatory, J. Geodyn., 41(1-3), 268-275.
Lambert, A., and C. Beaumont (1977), Nano variations in gravity due to seasonal groundwater movements; implications for the gravitational detection of tectonic movements, J. Geophys. Res., 82, 297-305.
Lambert, A., N. Courtier, G. S. Sasagawa, F. Klopping, D. Winester, T. S. James, and J. O. Liard (2001), New constraints on Laurentide postglacial rebound from absolute gravity measurements, Geophys. Res. Lett., 28, 2109-2112.
Llubes, M., N. Florsch, J. Hinderer, L. Longuevergne, and M. Amalvict (2004), Local hydrology, the Global Geodynamics Project and CHANW/GRACE perspective: Some cases studies, J. Geodyn., 38, 355-374.
Mäkinen, J., and S. Tattari (1990), The influence of variation in subsurface water storage on observed gravity, in Proceedings of the 11th International Symposium: Earth Tides, edited by J. Kakkuri, pp. 457-471, Schweitzerbart, Stuttgart, Germany
Mallants, D., D. Jacques, M. Vanclooster, J. Diels, and J. Feyen (1996), A stochastic approach to simulate water flow in macroporous soil, Geoderma, 70, 234-299.
Merriam, J. B. (1992), Atmospheric pressure and gravity, Geopkys. J. Int., 109, 488-500.
Milly, P. C. D., and A. B. Shmakin (2002), Global modeling of land water and energy balances. Part I. The land dynamics (LaD) model, J. Hydrometeorol., 3, 283-299.
Neumeyer, J., J. Hagedoorn, J. Leitloff, and T. Schmidt (2004), Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements, J. Geodyn., 38, 437-450.
Neumeyer, J., et al. (2006), Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models, J. Geod., 79(10-11), 573-585, doi:10.1007/sOO190-005-0014-8.
Parkin, T. B., and E. E. Codling (1990), Rainfall distribution under a corn canopy: Implications for managing agrochemicals, Agron. J, 82, 1166-1169.
Pazdirek, O., and V. Blaha (1996), Examples of resistivity imaging using ME-100 resistivity field acquisition system, paper presented at 58th Conference and Technical Exhibition, Ent. Assoc. of Geosci. and Eng., Amsterdam, Netherlands, 3-7 June.
Peter, G., F. Klopping, and K. A. Berstis (1995), Observing and modeling gravity changes caused by soil moisture and groundwater table variations with superconducting gravimeters in Richmond, Florida, U.S.A., Cah. Cent. Eur. Geodyn. Seismol., 11, 147-159.
Simon, D. (2002), Modelling of the field of gravity variations induced by the seasonal air mass warming during 1998-2000, Bul. Inf. Marees Terr., 136, 10,821-10,836.
Spratt, R. S. (1982), Modelling of atmospheric pressure variations on gravity, Geophys. J. R. Astron. Soc., 71, 173-186.
Van Camp, M., and O. Francis (2006), Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?, J. Geod., in press.
Van Camp, M., S. D. P. Williams, and O. Francis (2005), Uncertainty of absolute gravity measurements, J. Geophys. Res., 110, B05406, doi:10.1029/2004JB003497.
van Dam, T., and O. Francis (1998), Two years of continuous measurements of tidal and nontidal variations of gravity in Boulder, Colorado, Geophys. Res. Lett., 25(3), 393-396.
van Dam, T., J. M. Wahr, P. C. D. Milly, and O. Francis (2001), Gravity changes due to continental water storage, J. Geod. Soc. Jpn., 47, 249-254.
Williams, S. D. P., T. F. Baker, and G. Jeffiies (2001), Absolute gravity measurements at UK tide gauges, Geophys. Res. Lett., 28(12), 2317-2320.
Zerbini, S., B. Richter, M. Negusini, C. Romagnoli, D. Simon, F. Domenichina, and W. Schwahn (2001), Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy, Earth Planet. Sci. Lett., 192, 267-279.
Zerbini, S., G. Cecconi, D. Colombo, F. Matonti, B. Richter, F. Rocca, and T. van Dam (2005), Monitoring natural and anthropogenic subsidence in the northern Adriatic area by space and terrestrial techniques, Geophys. Res. Abstr, 7, 1607-7962/gra/EGU05-A-03176.