Reference : Modulation of steroid-dependent male sexual behavior and neural gene expression: A ro...
Scientific congresses and symposiums : Paper published in a journal
Life sciences : Anatomy (cytology, histology, embryology...) & physiology
Modulation of steroid-dependent male sexual behavior and neural gene expression: A role for steroid receptor co-activators
Charlier, Thierry mailto [Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau >]
Ball, Gregory F [ > > ]
Balthazart, Jacques mailto [Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau >]
Trabajos del Instituto Cajal
Instituto Cajal
International Meeting on Steroid and Nervous System
[en] One of the best-characterized actions of steroids is the regulation of brain areas involved in endocrine function and in the activation of reproductive behaviors in male and female vertebrates. Progress in the understanding of the mechanisms that control the expression of the eukaryotic genome by nuclear receptors has brought forward the importance of steroid receptor coactivators in mediating efficient gene transcription. However, little is know about the specific physiological requirements of these coactivators in vivo. In Japanese quail, testosterone treatment of castrated males restores the full copulatory behavior and increases the volume of the sexually dimorphic medial preoptic nucleus (POM) to the level observed in intact males [1]. Testosterone also affects a number of sexually dimorphic neurochemical characteristics such as the vasotocineric innervation of the septum and meadial preoptic nucleus [2]. The quail therefore provides an excellent model to study steroid-dependent sexual behavior and the associated neuroplasticity and should provide insights into the modulation of steroid action by steroid receptor coactivators. The present studies were focused on the steroid receptor co-activator-1 (SRC-1), which was already shown to be involved in the process of sexual differentiation of brain and behavior in rats [3]. We first amplified by RT-PCR from quail brains a 3,411bp fragment highly homologous with the chicken (94.5%) and mammalian (70%) SRC-1 and designed digoxigenin-labeled oligonucleotides for in situ hybridization. A broad distribution of SRC-1 transcripts was observed throughout the male quail brain. A particularly dense coactivator expression was observed in limbic (e.g. POM, nucleus striae terminalis) and mesencephalic (e.g. substantia grisea centralis) nuclei associated with the control of male sexual behavior [4]. Because male and female quail exhibit a very pronounced sexual dimorphism in the steroid-dependent mechanisms that activate male-typical copulatory behavior, we investigated the potential role of SRC-1 in the sexually differentiated responses to steroids by quantifiying the SRC-1 mRNA by real time quantitative polymerase chain reaction (qPCR) and the corresponding protein by western blot (WB). Contrary to previous results, which had identified a higher SRC-1 mRNA expression in the POM of males compared to females [4], we found in two separate experiments that sexually mature females had higher concentrations of SRC-1 in the preoptic area-hypothalamus (HPOA) compared to males. Additional studies should be carried out to identify the origins of this discrepancy but seasonality and time of the day when brains were collected are potentially involved. We also quantified the SRC-1 mRNA and protein in the preoptic area-hypothalamus (HPOA) of castrated males treated or not with testosterone. SRC-1 mRNA was increased by testosterone in two independent experiments but not in a third one. This difference is likely due to the differential manipulations of the birds during these experiments. Birds had been repeatedly handled to test their sexual behavior in the first experiment and we showed that stress tends to decrease the coactivator expression in the male HPOA. This interpretation is strengthened by recent work in rats indicating that stress regulates SRC-1 expression in hypothalamus and hippocampus [5]. More surprisingly, we found a significant correlation between the expression of SRC-1 and the time of the day when birds were killed in the optic lobes, hippocampus and hindbrain. The expression of SRC-1 in the optic lobes increased throughout the day, independently of sex, testosterone treatment or stress. In the hippocampus and hindbrain, the coactivator concentration varied in opposite directions during the morning and afternoon and reached respectively its lowest or highest concentration around the middle of the day, here again independently of sex, stress and hormonal treatment. Together, these data support the idea that SRC-1 is not constitutively expressed but regulated by steroids, stress and possibly other unidentified factors. Differential controls also appear to take place in specific brain nuclei and these differential controls should be further analyzed by immunohistochemistry and in situ hybridization.
A second part of our work was dedicated to the study of the physiological significance of SRC-1 whith the use of daily intra-cerebroventricular injections of modified antisense (AS) oligonucleotides (Locked nucleic acid LNA) to disrupt SRC-1 expression in the POM. AS injections significantly reduced the expression of male copulatory behavior in response to exogenous testosterone compared to control animals (Ctrl group) that received the vehicle alone or scrambled (SC) oligonucleotides. Moreover, sexual behavior was restored and even enhanced within 48 hours after interruption of AS injection (ASSC group). Western blot analysis confirmed the decrease of SRC-1 expression in AS animals and demonstrated an over-expression of the coactivator in ASSC animals. The effects of SRC-1 knock down on behavior was related to a reduced POM volume defined by Nissl-staining and aromatase immunohistochemistry. The aromatase index, indicative of the relative amount of aromatase in the POM as well as the vasotocinergic innervation of this nucleus were higher in the Ctrl group. Taken together, these findings indicate that SRC-1 functions as a critical regulatory molecule in the brain to modulate steroid-dependent gene transcription and behavior. The study of the modulation of nuclear receptors activity by different co-regulatory proteins is still in its infancy. Abnormal co-activator expression or function is currently being linked to some endocrine/neurological disorders in humans and it is thus critical to understand how co-activator expression and function are controlled in the developing as well as in the adult brain.

File(s) associated to this reference

Fulltext file(s):

Restricted access
Torino coJBTCAuthor postprint35.5 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.