[en] The electrical characteristics of Si nanowire gated by an array of very closely spaced nanowire gate electrodes are experimentally determined and theoretically modeled. Qualitative and quantitative changes in the transport characteristics of these devices, as a function of gate-array voltage, are described. Experiments are reported for two widths of Si nanowires, 40 and 17 nm, and for a varying number of gate electrodes, all spaced at a pitch of 33 tim. We find that these top nanowire gate electrodes can be utilized to locally deplete the carriers in the underlying Si nanowire and thus define an array of coupled quantum dots along the nanowire. Reproducible Coulomb blockade is observed, and clear diamond features are obtained when the conductance is plotted in the plane of the source-drain and gate voltages. The regularity of the diamond diagrams is imposed by the regularity of the SNAP top gate electrodes. Model computations of the electronic structure starting from a tight-biding Hamiltonian in the atomic basis suggest that the control made possible by the top gate voltage induces the emergence (and reversible submergence) of a coupled quantum dot structure in an otherwise homogenously doped Si nanowire.
Disciplines :
Chemistry
Author, co-author :
Xu, K.
Green, J. E.
Heath, J. R.
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Levine, Raphaël David
Language :
English
Title :
The emergence of a coupled quantum dot array in a doped silicon nanowire gated by ultrahigh density top gate electrodes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kastner, M. A. Phys. Today 1993, 46, 24-31.
Ashoori, R. C. Nature 1996, 379, 413-419.
Grabert, H., Devoret, M. H., Eds. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures; Plenum: New York, 1992.
Kouwenhoven, L. P.; Austing, D. G.; Tarucha, S. Rep. Prog. Phys. 2001, 64, 701-736.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545-610.
Burda,C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025-1102.
Guo, L. J.; Leobandung, E.; Chou, S. Y. Science 1997, 275, 649-651.
Likharev, K. K. Proc. IEEE 1999, 87, 606-632.
Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978-1981.
Beverly, K. C.; Sample, J. L.; Sampaio, J. F.; Remade, F.; Heath, J. R.; Levine, R. D. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6456-6459.
Remade, F.; Beverly, K. C.; Heath, J. R.; Levine, R. D. J. Phys. Chem. B 2002, 106, 4116-4122.
Remade, F.; Beverly, K. C.; Heath, J. R.; Levine, R. D. J. Phys. Chem. B 2003, 107, 13892-13901.
Duruoz, C. I.; Clarke, R. M.; Marcus, C. M.; Harris, J. S. Phys. Rev. Lett. 1995, 74, 3237-3240.
Waugh, F. R.; Berry, M. J.; Mar, D. J.; Westervelt, R. M.; Campman, K. L.; Gossard, A. C. Phys. Rev. Lett. 1995, 75, 705-708.
Waugh, F. R.; Berry, M. J.; Crouch, C. H.; Livermore, C.; Mar, D. J.; Westervelt, R. M.; Campman, K. L.; Gossard, A.C.Phys. Rev. B 1996, 53, 1413-1420.
Gaudreau, L.; Studenikin, S. A.; Sachrajda, A. S.; Zawadzki, P.; Kam, A.; Lapointe, J.; Korkusinski, M.; Hawrylak, P. Phys. Rev. Lett. 2006, 97, 036807.
Livermore, C.; Crouch, C. H.; Westervelt, R. M.; Campman, K. L.; Gossard, A.C.Science 1996, 274, 1332-1335.
van der Wiel, W. G.; De Franceschi, S.; Elzerman, J. M.; Fujisawa, T.; Tarucha, S.; Kouwenhoven, L. P. Rev. Mod. Phys. 2003, 75, 1-22.
Petta, J. R.; Johnson, A. C.; Taylor, J. M.; Laird, E. A.; Yacoby, A.; Lukin, M. D.; Marcus, C. M.; Hanson, M. P.; Gossard, A.C.Science 2005, 309, 2180-2184.
Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Nature 1997, 386, 474-477.
De Franceschi, S.; van Dam, J. A.; Bakkers, E.; Feiner, L. F.; Gurevich, L.; Kouwenhoven, L. P. Appl. Phys. Lett. 2003, 83, 344-346.
Zhong, Z. H.; Fang, Y.; Lu, W.; Lieber,C.M. Nano Lett. 2005, 5, 1143-1146.
Bockrath, M.; Liang, W. J.; Bozovic, D.; Hafner, J. H.; Lieber,C.M.; Tinkham, M.; Park, H. K. Science 2001, 291, 283-285.
Mason, N.; Biercuk, M. J.; Marcus,C.M. Science 2004, 303, 655-658.
Postma, H. W. C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker,C.Science 2001, 293, 76-79.
Bjork, M. T.; Thelander, C.; Hansen, A. E.; Jensen, L. E.; Larsson, M. W.; Wallenberg, L. R.; Samuelson, L. Nano Lett. 2004, 4,1621-1625.
Yang, C.; Zhong, Z. H.; Lieber,C.M. Science 2005, 310, 1304-1307.
Fasth, C.; Fuhrer, A.; Bjork, M. T.; Samuelson, L. Nano Lett. 2005, 5, 1487-1490.
Biercuk, M. J.; Garaj, S.; Mason, N.; Chow, J. M.; Marcus,C.M. Nano Lett. 2005, 5, 1267-1271.
Fujiwara, A.; Inokawa, H.; Yamazaki, K.; Namatsu, H.; Takahashi, Y.; Zimmerman, N. M.; Martin, S. B. Appl Phys. Lett. 2006, 88, 053121.
Takahashi, Y.; Ono, Y.; Fujiwara, A.; Inokawa, H. J. Phys.: Condens. Matter 2002, 14, R995-R1033.
Smith, R. A.; Ahmed, H. J. Appl. Phys. 1997, 81, 2699-2703.
Koester, T.; Goldschmidtboeing, F.; Hadam, B.; Stein, J.; Altmeyer, S.; Spangenberg, B.; Kurz, H.; Neumann, R.; Brunner, K.; Abstreiter, G. J. Vac. Sci. Technol. B 1998, 16, 3804-3807.
Augke, R.; Eberhardt, W.; Strahle, S.; Prins, F. E.; Kern, D. P. Microelectron. Eng. 1999, 46, 141-144.
Tilke, A.; Blick, R. H.; Lorenz, H.; Kotthaus, J, P. J. Appl. Phys. 2001, 89, 8159-8162.
Tilke, A. T.; Simmel, F.C.; Lorenz, H.; Blick, R. H.; Kotthaus, J. P. Phys. Rev. B 2003, 68, 075311.
Hu, S. F.; Wong, W. Z.; Liu, S. S.; Wu, Y.C.; Sung,C.L.; Huang, T. Y.; Yang, T. J. Adv. Mater. 2002, 14, 736-739.
Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Science 2003, 300, 112-115.
Beckman, R. A.; Johnston-Halperin, E.; Melosh, N. A.; Luo, Y.; Green, J. E.; Heath, J. R. J. Appl. Phys. 2004, 96, 5921-5923.
Wang, D. W.; Sheriff, B. A.; Heath, J. R. Small 2006, 2, 1153-1158.
Wang, D. W.; Sheriff, B. A.; Heath, J. R. Nano Lett. 2006, 6, 1096-1100.
Johnson, S, Emergence; Scribner: New York, 2002.
Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Bredas, J. L.; StuhrHansen, N.; Hedegard, P.; Bjornholm, T. Nature 2003, 425, 698-701.
Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang,C.; Yaish, Y.; Petta, J. R.; Rinkoski, M.; Sthena, J. P.; Abruna, H. D.; McEuen, P. L.; Ralph, D.C.Nature 2002, 417, 722-725.
Yu, H. B.; Luo, Y.; Beverly, K.; Stoddart, J. F.; Tseng, H. R.; Heath, J. R. Angew. Chem., Int. Ed. 2003, 42, 5706-5711.
Chen, G. L.; Klimeck, G.; Datta, S.; Chen, G. H.; Goddard, W. A. Phys. Rev. B 1994, 50, 8035-8038.
McConnell, H. M. J. Chem. Phys. 1961, 35, 508-515.
Anderson, P. W. Phys. Rev. 1959, 115, 2-13.
Phillips, P. Annu. Rev. Phys. Chem. 1993, 44, 115-144.
Remade, F.; Levine, R. D. J. Phys. Chem. B 2001, 105, 2153-2162.
Sample, J. L.; Beverly, K.C.; Chaudhari, P. R.; Remade, F.; Heath, J. R.; Levine, R. D. Adv. Mater. 2002, 14, 124-128.
Beckman, R.; Johnston-Halperin, E.; Luo, Y.; Green, J. E.; Heath, J. R. Science 2005, 310, 465-468.
Hollenberg, L.C.L.; Greetree, A. D.; Fowler, A. G.; Wellard,C.J. Phys. Rev. B 2006, 74, 045311.
Greentree, A. D.; Cole, J. H.; Hamilton, A. R.; Hollenberg, L.C.L. Phys. Rev. B 2004, 70, 235317.
Hoffmann, R. Solids and Surfaces; VCH: New York, 1988.
Schatz, G.C.; Ratner, M. A. Quantum Mechanics in Chemistry; Dover: New York, 2001.
Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 1983.
Remade, F.; Levine, R. D. J. Am. Chem. Soc. 2000, 122, 4084-4091.
Remade, F.; Levine, R. D. ChemPhysChem 2001, 2, 20-36.
Beverly, K.C.; Sampaio, J. F.; Heath, J. R. J. Phys. Chem. B 2002, 106, 2131-2135.
McAlpine, M.C.; Ahmad, H.; Wang, D.; Heath, J. R. Nat. Mater. 2007, 6, 379-384.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.