[en] The gold-ammonia bonding patterns of the complexes which are formed between the ammonia clusters (NH/sub 3/)/sub 1<or=n<or=3/ and gold clusters of different sizes that range from one gold atom to the tri-, tetra-, and 20-nanogold clusters are governed by two basic and fundamentally different ingredients: the anchoring Au-N bond and the nonconventional N-H ... Au hydrogen bond. The latter resembles, by all features, a conventional hydrogen bond and is formed between a typical conventional proton donor N-H group and the gold cluster that behaves as a nonconventional proton acceptor. We provide strong computational evidence that the gold-ammonia bonding patterns exhibit distinct characteristics as the Z charge state of the gold cluster varies within Z=0,+/-1. The analysis of these bonding patterns and their effects on the N-H ... N H-bonded ammonia clusters are the subject of this paper.
Disciplines :
Chemistry
Author, co-author :
Kryachko, Eugène ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
The gold-ammonia bonding patterns of neutral and charged complexes Au m 0+/-1-(NH3)n. I. Bonding and charge alternation.
Publication date :
2007
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics, New York, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
(a) M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 0366-7022 1987, 405; (b) M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989); (c) M. Haruta, Catal. Today 36, 153 (1997); (d) A. Shiga and M. Haruta, Appl. Catal. A: General 291, 6 (2005), and references therein.
(a) M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 0366-7022 1987, 405; (b) M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989); (c) M. Haruta, Catal. Today 36, 153 (1997); (d) A. Shiga and M. Haruta, Appl. Catal. A: General 291, 6 (2005), and references therein.
(a) M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 0366-7022 1987, 405; (b) M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989); (c) M. Haruta, Catal. Today 36, 153 (1997); (d) A. Shiga and M. Haruta, Appl. Catal. A: General 291, 6 (2005), and references therein.
(a) M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 0366-7022 1987, 405; (b) M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989); (c) M. Haruta, Catal. Today 36, 153 (1997); (d) A. Shiga and M. Haruta, Appl. Catal. A: General 291, 6 (2005), and references therein.
M. Valden, X. Lai, and D. W. Goodman, Science 0036-8075 10.1126/science.281.5383.1647 281, 1647 (1998); B. Hammer and J. K. Nørskov, Nature (London) 0028-0836 10.1038/376238a0 376, 238 (1995); A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 1089-5639 10.1021/jp9935992 103, 9573 (1999); M. Bäumer and H.-J. Freund, Prog. Surf. Sci. 61, 127 (1999), and referencs therein.
M. Valden, X. Lai, and D. W. Goodman, Science 0036-8075 10.1126/science.281.5383.1647 281, 1647 (1998); B. Hammer and J. K. Nørskov, Nature (London) 0028-0836 10.1038/376238a0 376, 238 (1995); A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 1089-5639 10.1021/jp9935992 103, 9573 (1999); M. Bäumer and H.-J. Freund, Prog. Surf. Sci. 61, 127 (1999), and referencs therein.
M. Valden, X. Lai, and D. W. Goodman, Science 0036-8075 10.1126/science.281.5383.1647 281, 1647 (1998); B. Hammer and J. K. Nørskov, Nature (London) 0028-0836 10.1038/376238a0 376, 238 (1995); A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 1089-5639 10.1021/jp9935992 103, 9573 (1999); M. Bäumer and H.-J. Freund, Prog. Surf. Sci. 61, 127 (1999), and referencs therein.
M. Valden, X. Lai, and D. W. Goodman, Science 0036-8075 10.1126/science.281.5383.1647 281, 1647 (1998); B. Hammer and J. K. Nørskov, Nature (London) 0028-0836 10.1038/376238a0 376, 238 (1995); A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 1089-5639 10.1021/jp9935992 103, 9573 (1999); M. Bäumer and H.-J. Freund, Prog. Surf. Sci. 61, 127 (1999), and referencs therein.
P. Pyykkö, Angew. Chem., Int. Ed. 1433-7851 10.1002/anie.200300624 43, 4412 (2004); P. Pyykkö, Inorg. Chim. Acta 358, 4113 (2005).
P. Pyykkö, Angew. Chem., Int. Ed. 1433-7851 10.1002/anie.200300624 43, 4412 (2004); P. Pyykkö, Inorg. Chim. Acta 358, 4113 (2005).
N. A. Lambropoulos, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 0021-9606 10.1063/1.1473197 116, 10277 (2002); M. Antolovich, L. F. Lindoy, and J. R. Reimers, J. Phys. Chem. A 108, 8434 (2004).
N. A. Lambropoulos, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 0021-9606 10.1063/1.1473197 116, 10277 (2002); M. Antolovich, L. F. Lindoy, and J. R. Reimers, J. Phys. Chem. A 108, 8434 (2004).
A. Antušek, M. Urban, and A. J. Sadlej, J. Chem. Phys. 119, 7247 (2003).
J. Hrušák, R. H. Hertwig, D. Schröder, P. Schwerdtfeger, W. Koch, and H. Schwarz, Organometallics 0276-7333 10.1021/om00003a031 14, 1284 (1995); T. H. Hertwig, J. Hrušák, D. Schröder, W. Koch, and H. Schwarz, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(95)00211-L 236, 194 (1995); D. Schröder, J. Hrušák, R. H. Hertwig, W. Koch, P. Scwerdtfeger, and H. Schwarz, Organometallics 14, 312 (1995).
J. Hrušák, R. H. Hertwig, D. Schröder, P. Schwerdtfeger, W. Koch, and H. Schwarz, Organometallics 0276-7333 10.1021/om00003a031 14, 1284 (1995); T. H. Hertwig, J. Hrušák, D. Schröder, W. Koch, and H. Schwarz, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(95)00211-L 236, 194 (1995); D. Schröder, J. Hrušák, R. H. Hertwig, W. Koch, P. Scwerdtfeger, and H. Schwarz, Organometallics 14, 312 (1995).
J. Hrušák, R. H. Hertwig, D. Schröder, P. Schwerdtfeger, W. Koch, and H. Schwarz, Organometallics 0276-7333 10.1021/om00003a031 14, 1284 (1995); T. H. Hertwig, J. Hrušák, D. Schröder, W. Koch, and H. Schwarz, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(95)00211-L 236, 194 (1995); D. Schröder, J. Hrušák, R. H. Hertwig, W. Koch, P. Scwerdtfeger, and H. Schwarz, Organometallics 14, 312 (1995).
M. A. Carvajal, J. J. Novoa, and S. Alvarez, J. Am. Chem. Soc. 0002-7863 126, 1465 (2004); R. Armunanto, C. F. Schwenk, and B. M. Rode, J. Am. Chem. Soc. 126, 9934 (2004).
M. A. Carvajal, J. J. Novoa, and S. Alvarez, J. Am. Chem. Soc. 0002-7863 126, 1465 (2004); R. Armunanto, C. F. Schwenk, and B. M. Rode, J. Am. Chem. Soc. 126, 9934 (2004).
D.-Y. Wu, B. Ren, Y.-X. Jiang, X. Xu, and Z.-Q. Tian, J. Phys. Chem. A 1089-5639 10.1021/jp025970i 106, 9042 (2002); H.-C. Hsu, F.-W. Lin, C.-C. Lai, P.-H. Su, and C.-S. Yeh, New J. Chem. 26, 481 (2002).
D.-Y. Wu, B. Ren, Y.-X. Jiang, X. Xu, and Z.-Q. Tian, J. Phys. Chem. A 1089-5639 10.1021/jp025970i 106, 9042 (2002); H.-C. Hsu, F.-W. Lin, C.-C. Lai, P.-H. Su, and C.-S. Yeh, New J. Chem. 26, 481 (2002).
J. V. Burda, J. Šponer, and P. Hobza, J. Phys. Chem. 0022-3654 10.1021/jp952941h 100, 7250 (1996); J. Šponer, M. Sabat, J. V. Burda, J. Leszczynski, P. Hobza, and B. Lippert, JBIC, J. Biol. Inorg. Chem. 4, 537 (1999).
J. V. Burda, J. Šponer, and P. Hobza, J. Phys. Chem. 0022-3654 10.1021/jp952941h 100, 7250 (1996); J. Šponer, M. Sabat, J. V. Burda, J. Leszczynski, P. Hobza, and B. Lippert, JBIC, J. Biol. Inorg. Chem. 4, 537 (1999).
E. S. Kryachko and F. Remacle, Nano Lett. 1530-6984 10.1021/nl050194m 5, 735 (2005); E. S. Kryachko and F. Remacle, J. Phys. Chem. B 109, 22746 (2005).
E. S. Kryachko and F. Remacle, Nano Lett. 1530-6984 10.1021/nl050194m 5, 735 (2005); E. S. Kryachko and F. Remacle, J. Phys. Chem. B 109, 22746 (2005).
(a) A. Billić, J. R. Reimers, N. S. Hush, and J. Hafner, J. Chem. Phys. 0021-9606 10.1063/1.1471245 116, 8981 (2002); (b) M. E. Coltrin and B. D. Kay, J. Chem. Phys. 0021-9606 10.1063/1.455444 89, 551 (1988); (c) B. D. Kay, K. R. Lykke, J. R. Creighton, and S. J. Ward, J. Chem. Phys. 91, 5120 (1989).
(a) A. Billić, J. R. Reimers, N. S. Hush, and J. Hafner, J. Chem. Phys. 0021-9606 10.1063/1.1471245 116, 8981 (2002); (b) M. E. Coltrin and B. D. Kay, J. Chem. Phys. 0021-9606 10.1063/1.455444 89, 551 (1988); (c) B. D. Kay, K. R. Lykke, J. R. Creighton, and S. J. Ward, J. Chem. Phys. 91, 5120 (1989).
(a) A. Billić, J. R. Reimers, N. S. Hush, and J. Hafner, J. Chem. Phys. 0021-9606 10.1063/1.1471245 116, 8981 (2002); (b) M. E. Coltrin and B. D. Kay, J. Chem. Phys. 0021-9606 10.1063/1.455444 89, 551 (1988); (c) B. D. Kay, K. R. Lykke, J. R. Creighton, and S. J. Ward, J. Chem. Phys. 91, 5120 (1989).
S. M. Hou, J. X. Zhang, R. Li, J. Ning, R. S. Han, Z. Y. Shen, X. Y. Zhao, Z. Q. Xue, and Q. Wu, Nanotechnology 0957-4484 10.1088/0957-4484/16/2/010 16, 239 (2005); R. Stadler, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 72, 241401 (R) (2005).
S. M. Hou, J. X. Zhang, R. Li, J. Ning, R. S. Han, Z. Y. Shen, X. Y. Zhao, Z. Q. Xue, and Q. Wu, Nanotechnology 0957-4484 10.1088/0957-4484/16/2/010 16, 239 (2005); R. Stadler, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 72, 241401 (R) (2005).
B. Xu, X. Xiao, and N. J. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja038949j 125, 16164 (2003); P. V́lez, S. A. Dassie, and E. P. M. Leiva, Phys. Rev. Lett. 95, 045503 (2005).
B. Xu, X. Xiao, and N. J. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja038949j 125, 16164 (2003); P. V́lez, S. A. Dassie, and E. P. M. Leiva, Phys. Rev. Lett. 95, 045503 (2005).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) D. I. Gittins and F. Caruso, Angew. Chem., Angew. Chem., Int. Ed. 1433-7851 10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 40, 3001 (2001); (b) V. J. Gandubert and R. B. Lennox, Langmuir 0743-7463 21, 6532 (2005); (c) D. Leff, L. Brandt, and J. R. Heath, Langmuir 0743-7463 10.1021/la960445u 12, 4723 (1996); (d) E. Podstawka, Y. Ozaki, and L. M. Proniewicz, Appl. Spectrosc. 0003-7028 59, 1516 (2005); (e) F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc. 0002-7863 10.1021/ja065864k 128, 15874 (2006); (f) L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 0002-7863 10.1021/ja0556326 128, 2911 (2006); (g) C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317 (2006).
(a) L. M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, and C. A. Mirkin, J. Am. Chem. Soc. 0002-7863 10.1021/ja0265355 124, 11248 (2002); (b) A. Gourishankar, S. Shukla, K. N. Ganesh, and M. Sastry, J. Am. Chem. Soc. 0002-7863 126, 13186 (2004); (c) M. Östblom, B. Liedberg, L. M. Demers, and C. A. Mirkin, J. Phys. Chem. B 109, 15150 (2005), and references therein.
(a) L. M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, and C. A. Mirkin, J. Am. Chem. Soc. 0002-7863 10.1021/ja0265355 124, 11248 (2002); (b) A. Gourishankar, S. Shukla, K. N. Ganesh, and M. Sastry, J. Am. Chem. Soc. 0002-7863 126, 13186 (2004); (c) M. Östblom, B. Liedberg, L. M. Demers, and C. A. Mirkin, J. Phys. Chem. B 109, 15150 (2005), and references therein.
(a) L. M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, and C. A. Mirkin, J. Am. Chem. Soc. 0002-7863 10.1021/ja0265355 124, 11248 (2002); (b) A. Gourishankar, S. Shukla, K. N. Ganesh, and M. Sastry, J. Am. Chem. Soc. 0002-7863 126, 13186 (2004); (c) M. Östblom, B. Liedberg, L. M. Demers, and C. A. Mirkin, J. Phys. Chem. B 109, 15150 (2005), and references therein.
(a) E. S. Kryachko and F. Remacle, in Recent Advances in the Theory of Chemical and Physical Systems, edited by, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, and, G. Delgado-Barrio, (Springer, Dordrecht, 2006), Vol. 15, pp. 433-450; (b) E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 0009-2614 404, 142 (2005); (c) E. S. Kryachko, A. Karpfen, and F. Remacle, J. Phys. Chem. A 109, 7309 (2005); (d) E. S. Kryachko and F. Remacle, in Theoretical Aspects of Chemical Reactivity, edited by, A. Torro-Labbe, Vol. 16 of Theoretical and Computational Chemistry, edited by, P. Politzer, (Elsevier, Amsterdam, 2006), pp. 219-250.
(a) E. S. Kryachko and F. Remacle, in Recent Advances in the Theory of Chemical and Physical Systems, edited by, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, and, G. Delgado-Barrio, (Springer, Dordrecht, 2006), Vol. 15, pp. 433-450; (b) E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 0009-2614 404, 142 (2005); (c) E. S. Kryachko, A. Karpfen, and F. Remacle, J. Phys. Chem. A 109, 7309 (2005); (d) E. S. Kryachko and F. Remacle, in Theoretical Aspects of Chemical Reactivity, edited by, A. Torro-Labbe, Vol. 16 of Theoretical and Computational Chemistry, edited by, P. Politzer, (Elsevier, Amsterdam, 2006), pp. 219-250.
(a) E. S. Kryachko and F. Remacle, in Recent Advances in the Theory of Chemical and Physical Systems, edited by, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, and, G. Delgado-Barrio, (Springer, Dordrecht, 2006), Vol. 15, pp. 433-450; (b) E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 0009-2614 404, 142 (2005); (c) E. S. Kryachko, A. Karpfen, and F. Remacle, J. Phys. Chem. A 109, 7309 (2005); (d) E. S. Kryachko and F. Remacle, in Theoretical Aspects of Chemical Reactivity, edited by, A. Torro-Labbe, Vol. 16 of Theoretical and Computational Chemistry, edited by, P. Politzer, (Elsevier, Amsterdam, 2006), pp. 219-250.
(a) E. S. Kryachko and F. Remacle, in Recent Advances in the Theory of Chemical and Physical Systems, edited by, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, and, G. Delgado-Barrio, (Springer, Dordrecht, 2006), Vol. 15, pp. 433-450; (b) E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 0009-2614 404, 142 (2005); (c) E. S. Kryachko, A. Karpfen, and F. Remacle, J. Phys. Chem. A 109, 7309 (2005); (d) E. S. Kryachko and F. Remacle, in Theoretical Aspects of Chemical Reactivity, edited by, A. Torro-Labbe, Vol. 16 of Theoretical and Computational Chemistry, edited by, P. Politzer, (Elsevier, Amsterdam, 2006), pp. 219-250.
(a) H. Schneider, A. D. Boese, and J. M. Weber, J. Chem. Phys. 0021-9606 10.1063/1.2006092 123, 084307 (2005); (b) H. Nuss and M. Jansen, Angew. Chem., Int. Ed. 1433-7851 45, 4369 (2006); (c) H. Nuss and M. Jansen, Z. Naturforsch. Sect. B, J. Chem. Sci. 61, 1205 (2006); (d) G. S. Shafai, S. Shetty, S. Krishnamurty, and D. G. Kanhere, J. Chem. Phys. 126, 014704 (2007).
(a) H. Schneider, A. D. Boese, and J. M. Weber, J. Chem. Phys. 0021-9606 10.1063/1.2006092 123, 084307 (2005); (b) H. Nuss and M. Jansen, Angew. Chem., Int. Ed. 1433-7851 45, 4369 (2006); (c) H. Nuss and M. Jansen, Z. Naturforsch. Sect. B, J. Chem. Sci. 61, 1205 (2006); (d) G. S. Shafai, S. Shetty, S. Krishnamurty, and D. G. Kanhere, J. Chem. Phys. 126, 014704 (2007).
(a) H. Schneider, A. D. Boese, and J. M. Weber, J. Chem. Phys. 0021-9606 10.1063/1.2006092 123, 084307 (2005); (b) H. Nuss and M. Jansen, Angew. Chem., Int. Ed. 1433-7851 45, 4369 (2006); (c) H. Nuss and M. Jansen, Z. Naturforsch. Sect. B, J. Chem. Sci. 61, 1205 (2006); (d) G. S. Shafai, S. Shetty, S. Krishnamurty, and D. G. Kanhere, J. Chem. Phys. 126, 014704 (2007).
(a) H. Schneider, A. D. Boese, and J. M. Weber, J. Chem. Phys. 0021-9606 10.1063/1.2006092 123, 084307 (2005); (b) H. Nuss and M. Jansen, Angew. Chem., Int. Ed. 1433-7851 45, 4369 (2006); (c) H. Nuss and M. Jansen, Z. Naturforsch. Sect. B, J. Chem. Sci. 61, 1205 (2006); (d) G. S. Shafai, S. Shetty, S. Krishnamurty, and D. G. Kanhere, J. Chem. Phys. 126, 014704 (2007).
This has been particularly shown in the recent works of the present authors on the neutral and charged clusters of gold: (a) F. Remacle and E. S. Kryachko, Adv. Quantum Chem. 0065-3276 47, 423 (2004); (b) F. Remacle and E. S. Kryachko, J. Chem. Phys. 122, 044304 (2005); and in the recent reviews in Refs..
This has been particularly shown in the recent works of the present authors on the neutral and charged clusters of gold: (a) F. Remacle and E. S. Kryachko, Adv. Quantum Chem. 0065-3276 47, 423 (2004); (b) F. Remacle and E. S. Kryachko, J. Chem. Phys. 122, 044304 (2005); and in the recent reviews in Refs..
T. M. Bernhardt, Int. J. Mass. Spectrom. 243, 1 (2005), and references therein.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03, Revision A.1, Gaussian, Inc., Pittsburgh, PA, 2003.
(a) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 0021-9606 10.1063/1.458934 93, 6654 (1990); (b) P. J. Hay and W. R. Wadt, J. Chem. Phys. 0021-9606 10.1063/1.448799 82, 270 (1985); P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
(a) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 0021-9606 10.1063/1.458934 93, 6654 (1990); (b) P. J. Hay and W. R. Wadt, J. Chem. Phys. 0021-9606 10.1063/1.448799 82, 270 (1985); P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
(a) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 0021-9606 10.1063/1.458934 93, 6654 (1990); (b) P. J. Hay and W. R. Wadt, J. Chem. Phys. 0021-9606 10.1063/1.448799 82, 270 (1985); P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
F. M. Abu-Awwad, J. Mol. Struct.: THEOCHEM 683, 57 (2004), and references therein.
C. G. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960); The Hydrogen Bond. Recent Developments in Theory and Experiments, edited by, P. Schuster, G. Zundel, and, C. Sandorfy, (North-Holland, Amsterdam, 1976).
C. G. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960); The Hydrogen Bond. Recent Developments in Theory and Experiments, edited by, P. Schuster, G. Zundel, and, C. Sandorfy, (North-Holland, Amsterdam, 1976).
(a) D. Feller, E. D. Glendening, and W. A. de Jong, J. Chem. Phys. 0021-9606 10.1063/1.477814 110, 1475 (1999); (b) H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, and K. S. Kim, J. Chem. Phys. 0021-9606 10.1063/1.1849134 122, 064314 (2005); (c) H. M. Lee, M. Diefenbach, S. B. Suh, P. Tarakeshwar, and K. S. Kim, J. Chem. Phys. 123, 074328 (2005).
(a) D. Feller, E. D. Glendening, and W. A. de Jong, J. Chem. Phys. 0021-9606 10.1063/1.477814 110, 1475 (1999); (b) H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, and K. S. Kim, J. Chem. Phys. 0021-9606 10.1063/1.1849134 122, 064314 (2005); (c) H. M. Lee, M. Diefenbach, S. B. Suh, P. Tarakeshwar, and K. S. Kim, J. Chem. Phys. 123, 074328 (2005).
(a) D. Feller, E. D. Glendening, and W. A. de Jong, J. Chem. Phys. 0021-9606 10.1063/1.477814 110, 1475 (1999); (b) H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, and K. S. Kim, J. Chem. Phys. 0021-9606 10.1063/1.1849134 122, 064314 (2005); (c) H. M. Lee, M. Diefenbach, S. B. Suh, P. Tarakeshwar, and K. S. Kim, J. Chem. Phys. 123, 074328 (2005).
(a) J. Hrusák, D. Scröder, and H. Schwarz, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(94)87104-3 225, 416 (1994); (b) H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, and K. S. Kim, J. Chem. Phys. 122, 064314 (2005).
(a) J. Hrusák, D. Scröder, and H. Schwarz, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(94)87104-3 225, 416 (1994); (b) H. M. Lee, S. K. Min, E. C. Lee, J.-H. Min, S. Odde, and K. S. Kim, J. Chem. Phys. 122, 064314 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
The experimental value of IEexpt (Au) =9.225 67 eV: (a) C. E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958), Vol. III; (b) For comparison with other methods see, e.g., W. Liu and C. van Wüllen, J. Chem. Phys. 0021-9606 10.1063/1.478237 110, 3730 (1999); (c) K. A. Barakat, T. R. Cundari, H. Rabaâ, and M. A. Omary, J. Phys. Chem. B 1089-5647 110, 14645 (2006), and references therein; (d) the experimental value of EAexpt (Au) =2.927±0.050 eV: K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 0021-9606 10.1063/1.461927 96, 3319 (1992); (e) EAtheor (Au) =2.33 eV: S. Buckart, G. Ganteför, Y. D. Kim, and P. Jena, J. Am. Chem. Soc. 0002-7863 125, 14205 (2003) and EAtheor (Au) =2.166 eV: (f) A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B 109, 22392 (2005).
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) The chain structure is the most stable conformer of Au3 lying below the triangular one by 2.4 kcal mol-1, after ZPVE. However, within a so-called DFT error (see Ref. and references therein), both these clusters are considered as almost isoenergetic; (b) the experimental value of IEexpt (Au3) =7.15 eV
(a) J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science 0036-8075 10.1126/science.1079879 299, 864 (2003); (b) R. B. King, Z. Chen, and P. v. R. Schleyer, Inorg. Chem. 0020-1669 10.1021/ic049628r 43, 4564 (2004); (c) see also E. S. Kryachko and F. Remacle, Int. J. Quantum Chem. 108, 000 (2008) for a review on the 20-nanogold cluster.
(a) J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science 0036-8075 10.1126/science.1079879 299, 864 (2003); (b) R. B. King, Z. Chen, and P. v. R. Schleyer, Inorg. Chem. 0020-1669 10.1021/ic049628r 43, 4564 (2004); (c) see also E. S. Kryachko and F. Remacle, Int. J. Quantum Chem. 108, 000 (2008) for a review on the 20-nanogold cluster.
(a) J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science 0036-8075 10.1126/science.1079879 299, 864 (2003); (b) R. B. King, Z. Chen, and P. v. R. Schleyer, Inorg. Chem. 0020-1669 10.1021/ic049628r 43, 4564 (2004); (c) see also E. S. Kryachko and F. Remacle, Int. J. Quantum Chem. 108, 000 (2008) for a review on the 20-nanogold cluster.
L. H. Skibsted and J. Bjerrum, Acta Chem. Scand., Ser. A 28, 740 (1974).
(a) L. M. Molina and B. Hammer, J. Catal. 0021-9517 10.1016/j.jcat.2005. 04.037 233, 399 (2005);
(b) H.-F. Zhang, M. Stender, R. Zhang, C. Wang, J. Li, and L.-S. Wang, J. Phys. Chem. B 108, 12259 (2004).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.