[en] Pulsed electrical set and reset inputs are used to simulate the temporal action of a finite state machine in a three terminal configuration for a variety of arrangements. The gate electrode is necessary only if it is of interest to tune the tunneling rate and to compensate for background charges. When the output is the current, a source and drain electrodes are required. If the output is determined by measuring charge occupancy, then a single junction suffices. The electron transfer rates are computed from the free energy change for a single electron transfer to or from a quantum dot of size such that only charge quantization matters. For a small enough dot the device could operate at room temperature. An asymmetric configuration of the source and drain favors a longer term time preservation of the memory of the device. An alternative design that operates with the same energetics and kinetic parameters is to pulse the resistance rather than the voltage. (C) 2008 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Klein, M.
Levine, Raphaël David
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
Principles of design of a set-reset finite state logic nanomachine
Publication date :
2008
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
American Institute of Physics, Melville, United States - New York
R. J. Glauber, J. Math. Phys. 0022-2488 10.1063/1.1703954 4, 294 (1963).
J. S. Langer, Ann. Phys. (N.Y.) 0003-4916 10.1016/0003-4916(71)90162-X 65, 53 (1971).
H. Metiu, K. Kitahara, and J. Ross, J. Chem. Phys. 0021-9606 10.1063/1.431920 64, 292 (1976).
K. K. Likharev, IBM J. Res. Dev. 32, 144 (1988). 0018-8646
D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 0163-1829 10.1103/PhysRevB.44.6199 44, 6199 (1991).
Single Charge Tunneling, edited by, H. Grabert, and, M. H. Devoret, (Plenum, New York, 1992).
K. K. Likharev, Proc. IEEE 0018-9219 10.1109/5.752518 87, 606 (1999).
B. M. Quinn, P. Liljeroth, V. Ruiz, T. Laaksonen, and K. Kontturi, J. Am. Chem. Soc. 0002-7863 10.1021/ja0349305 125, 6644 (2003).
E. Katz, O. Lioubashevski, and I. Willner, Chem. Commun. (Cambridge) 1359-7345, 2006, 1109.
I. O. Kulik and R. I. Shekhter, Sov. Phys. JETP 41, 308 (1975). 0038-5646
M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker, and R. C. Jaklevic, Phys. Rev. B 0163-1829 10.1103/PhysRevB.43.1146 43, 1146 (1991).
K. Mullen, E. Ben-Jacob, R. C. Jaklevic, and Z. Schuss, Phys. Rev. B 0163-1829 10.1103/PhysRevB.37.98 37, 98 (1988).
D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 0022-2291 10.1007/BF00683469 62, 345 (1986).
L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 0034-4885 10.1088/0034-4885/64/6/201 64, 701 (2001).
Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, and Y. Takahashi, J. Appl. Phys. 0021-8979 10.1063/1.1843271 97, 031101 (2005).
K. Uchida, in Nanoelectronics and Information Technology, edited by, R. Waser, (Wiley, Weinheim, 2003), pp. 426-443.
R. Hanson, L. P. Kouwenhoven, J. R. Petha, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 0034-6861 10.1103/RevModPhys.79.1217 79, 1217 (2007).
J. R. Tucker, J. Appl. Phys. 0021-8979 10.1063/1.352206 72, 4399 (1992).
Note however that the design of Tucker determines the output by measuring the voltage and so it is dissipative only during the switching.
M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals (Prentice-Hall, Upper Saddle River, NJ, 2000).
F. Remacle and R. D. Levine, J. Chem. Phys. 0021-9606 10.1063/1.1372765 114, 10239 (2001).
F. Remacle and R. D. Levine, Phys. Rev. A 1050-2947 10.1103/PhysRevA.73. 033820 73, 033820 (2006).
F. Remacle, S. Speiser, and R. D. Levine, J. Phys. Chem. B 105, 5589 (2001).
O. Kuznetz, H. Salman, N. Shakkour, Y. Eichen, and S. Speiser, Chem. Phys. Lett. 451, 63 (2008). 0009-2614
F. Remacle, R. Weinkauf, and R. D. Levine, J. Phys. Chem. A 1089-5639 10.1021/jp0557417 110, 177 (2006).
F. Remacle, J. R. Heath, and R. D. Levine, Proc. Natl. Acad. Sci. U.S.A. 0027-8424 10.1073/pnas.0501623102 102, 5653 (2005).
E. Torres, K. L. Kompa, F. Remacle, and R. D. Levine, Chem. Phys. 0301-0104 10.1016/j.chemphys.2008.01.015 347, 531 (2008).
kB T e2 /2C, where kB is Boltzmann's constant and C is the capacity. Roughly, T (in K) 103 /C (in aF) and dots with capacity of an attofarad (= 10-18 F) or below are currently available.
The discharge rate that has a threshold at 3e/2C is the discharge of the dot from the charge state N=2 to the state N=1. The discharge of N=1 state (solid line in Fig.), is possible only for a voltage below e/2C.
T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.59.109 59, 109 (1987).
A. E. Hanna and M. Tinkham, Phys. Rev. B 0163-1829 10.1103/PhysRevB.44. 5919 44, 5919 (1991).
R. C. Ashoori, Nature (London) 0028-0836 10.1038/379413a0 379, 413 (1996).
M. A. Kastner, Phys. Today 0031-9228 10.1063/1.881371 46 (1), 24 (1993).
An ampere is roughly a flow of 1019 electrons per second. A current of a picoampere lasting for a nanosecond corresponds to an average population loss of one dot in a hundred.
M. Klein, S. Rogge, F. Remacle, and R. D. Levine, Nano Lett. 1530-6984 10.1021/nl071376e 7, 2795 (2007).
What determines the possible value of the resistance is that the low leakage current is measurable by the available technology and is above the noise level set by the thermal fluctuations.
A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. Bakkers, and L. P. Kouwenhoven, Nano Lett. 1530-6984 10.1021/nl0621037 7, 2559 (2007).
D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B 0163-1829 10.1103/PhysRevB.56.9829 56, 9829 (1997).
R. I. Shekhter, Y. Galperin, L. Y. Gorelik, A. Isacsson, and M. Jonson, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/15/12/201 15, R441 (2003).
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.92.166801 92, 166801 (2004).
R. I. Shekhter, L. Y. Gorelik, M. Jonson, Y. M. Galperin, and V. M. Vinokur, J. Comput. Theor. Nanosci. 1546-1955 4, 860 (2007).
M. A. Eriksson and M. Friesen, Nat. Nanotechnol. 2, 595 (2007). 1748-3387
Y. J. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, Nat. Nanotechnol. 1748-3387 10.1038/nnano.2007.302 2, 622 (2007).
T. Feder, IEEE Trans. Inf. Theory 35, 569 (1989). 0018-9448
J. v. Neumann, in Automata Studies, edited by, C. E. Shannon, and, J. McCarthy, (Princeton University Press, Princeton, 1956), pp. 43-98.
A. N. Korotkov, D. V. Averin, and K. K. Likharev, Physica B (Amsterdam) 165, 927 (1990). 0921-4526
D. T. Gillespie, J. Phys. Chem. 0022-3654 10.1021/j100540a008 81, 2340 (1977).
L. R. C. Fonseca, A. N. Korotkov, K. K. Likharev, and A. A. Odintsov, J. Appl. Phys. 0021-8979 10.1063/1.360752 78, 3238 (1995).
E. Bonet, M. M. Deshmukh, and D. C. Ralph, Phys. Rev. B 0163-1829 10.1103/PhysRevB.65.045317 65, 045317 (2002).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.