[en] Establishing whether a newly discovered solid phase qualifies as a mineral of natural geological origin requires a thorough evaluation of its context of occurrence. This paper builds on the existing guidelines of the Commission on New Minerals, Nomenclature and Classification (CNMNC) and introduces updated recommendations, developed with input from the International Mineralogical Association (IMA) Mediation Committee (MC), aimed at strengthening the credibility of CNMNC mineral proposals, particularly for species with uncertain origins. Through a critical re-evaluation of three case studies (tewite, wumuite, and liguowuite), it is shown how textural and contextual evidence, or the lack thereof, impacts the assessment of natural authenticity. We propose an enhanced documentation checklist that incorporates geological, textural, and isotopic criteria to reduce ambiguity, avoid misinterpretation of anthropogenic phases, and safeguard against potential fraud.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bosi, Ferdinando ; Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
Hatert, Frédéric ; Université de Liège - ULiège > Département de géologie > Minéralogie et cristallochimie
Meisser, Nicolas; Department of Geology, University of Lausanne, Naturéum, Anthropole, Chamberonne, Lausanne, Switzerland
Pasero, Marco; Department of Earth Sciences, University of Pisa, Pisa, Italy
Mills, Stuart; Gallery of Natural Art, Richardson, USA
Language :
English
Title :
IMA-CNMNC guidelines for assessing the natural geological origin of minerals
Allington-Jones, L.: Cleaning minerals: Practical and ethical considerations, The Geological Curator, 10, 473–479, 2017.
Bindi, L., Eiler, J., Guan, Y., Hollister, L. S., MacPherson, G. J., Steinhardt, P. J., and Yao, N.: Evidence for the extraterrestrial origin of a natural quasicrystal, P. Natl. Acad. Sci. USA, 109, 1396–1401, https://doi.org/10.1073/pnas.1111115109, 2012.
Bindi, L., Kolb, W., Nelson Eby, G., Asimow, P. D., Wallace, T. C., and Steinhardt, P. J.: Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test, P. Natl. Acad. Sci. USA, 118, e2101350118, https://doi.org/10.1073/pnas.2101350118, 2021.
Brugger, J., Cuchet, S., Van Der Burgt, A., Crumbach, M., Etschmann, B., Xing, Y., Ram, R., Michaut, P., Nebel, O., Raveggi, M., Maas, R., Pearce, M., and Howard, D.: Titanite and allanite as a record of multistage co-mobility of Ti–REE–Nb–As during metamorphism in the Central Alps, Am. Mineral., 110, 603–621, https://doi.org/10.2138/am-2024-9378, 2025.
Duthaler, R. and Weiss, S.: Mineral cleaning for collectors, 3rd edn., edited by: Duthaler, R., Bettingen, Switzerland, 190 pp., 2023.
Ellern, H.: Military and Civilian Pyrotechnics, Chemical Publishing Company, New York, 480 pp., ISBN 978-0-8206-0364-3, 1968.
Fletcher, J. C. and Phillips, W. M.: High temperature resistant cermet and ceramic compositions, United States Patent 4,131,459, 26 December 1978, 8 pp., 1978.
Galluser, A., Rhumorbarbe, D., and Werner, D. (eds.): Examination of Firearms and Ammunition Components in Criminal Investigation, EPFL Press, Lausanne, 624 pp., ISBN 978-2-88915-420-3, 2022.
Hazen, R. M., Grew, E. S., Origlieri, M. J., and Downs, R. T.: On the mineralogy of the “Anthropocene Epoch”, Am. Mineral., 102, 595–611, https://doi.org/10.2138/am-2017-5903, 2017.
Ivanova, M. A., Lorenz, C. A., Borisovskiy, S. E., Burmistrov, A. A., Korost, D. V., Korochantsev, A. V., Logunova, M. N., Shornikov, S. I., and Petaev, M. I.: Composition and origin of holotype Al–Cu–Zn minerals in relation to quasicrystals in the Khatyrka meteorite, Meteorit. Planet. Sci., 52, 869–883, https://doi.org/10.1111/maps.12839, 2017.
Kampf, A. R. and Mills, S. J.: Lead hydrogen citrate mono-hydrate, Pb(C6H6O7) qH2O, formation during specimen cleaning: a cautionary mineralogical tale. Min. Mag., 74, 683–690, https://doi.org/10.1180/minmag.2010.074.4.683, 2010.
Li, G.W., Xue, Y., and Xiong, M.: Tewite: a K–Te–W new mineral species with a modified tungsten-bronze type structure, from the Panzhihua–Xichang region, southwest China, Eur. J. Mineral., 31, 145–152, https://doi.org/10.1127/ejm/2019/0031-2813, 2019.
Meyer, R., Köhler, J., and Homburg, A.: Explosives, 7th edn., Wiley-VCH, Weinheim, 442 pp., ISBN 978-3-527-33776-7, 2016.
Mills, S. J., Kartashov, P. M., Ma, C., Rossman, G. R., Novgorodova, M. I., Kampf, A. R., and Raudsepp, M.: Yttriaite(Y): the natural occurrence of Y2O3 from the Bol’shaya Pol’ya River, Subpolar Urals, Russia, Am. Mineral., 96, 1166–1170, https://doi.org/10.2138/am.2011.3746, 2011.
Miyawaki, R., Hatert, F., Pasero, M., and Mills, S. J.: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 57, Eur. J. Mineral., 32, 495–499, https://doi.org/10.5194/ejm-32-495-2020, 2020.
Orlandi, P. and Panunzi, A.: A new mineral. . . almost: 1,5-dinitronaphthalene from the Boarezzo mine, Varese, Italy, Mineral. Rec., 29, 483–484, 1998.
Panich, A. M., Shames, A. I., Mogilyansky, D., Goren, S. D., and Dolmatov, V. Yu.: Detonation nanodiamonds fabricated from tetryl: synthesis, NMR, EPR and XRD study, Diamond Relat. Mater., 108, 107888, https://doi.org/10.1016/j.diamond.2020.107918, 2020.
Parafiniuk, J. and Hatert, F.: New IMA CNMNC guidelines on combustion products from burning coal dumps, Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, 2020.
Peacor, D. R., Simmons Jr., W. B., Essene, E. J., and Heinrich, E. Wm.: New data on and discreditation of “texasite,” “albrittonite,” “cuproartinite,” “cuprohydromagnesite,” and “yttromicrolite,” with corrected data on nickelbischofite, rowlandite, and yttrocrasite, Am. Mineral., 67, 156–169, 1982.
Seman, J., Giraldo, C. H. C., and Johnson, C. E.: Reactive not Proactive: Explosive Identification Taggant. History and Introduction of the Nuclear Barcode Taggant Model, Propellants Explosives Pyrotechnics, 44, 1–12, https://doi.org/10.1002/prep.201800322, 2019.
Sperner, B., Jonckheere, R., and Pfänder, J. A.: Testing the influence of high-voltage mineral liberation on grain size, shape and yield, and on fission track and 40Ar/39Ar dating, Chem. Geol., 371, 83–95, https://doi.org/10.1016/j.chemgeo.2014.02.003, 2014.
Xue, Y., Li, G., and Xie, Y.: Wumuite (KAl0.33W2.67O9) – a new mineral with an HTB-type structure from the Panzhihua–Xichang region in China, Eur. J. Mineral., 32, 483–494, https://doi.org/10.5194/ejm-32-483-2020, 2020.
Xue, Y., Sun, N., He, H., Chen, A., and Yang, Y.: Liguowuite, WO3, a new member of the A-site vacant perovskite type minerals from the Panzhihua–Xichang region, China, Eur. J. Mineral., 34, 95–108, https://doi.org/10.5194/ejm-34-95-2022, 2022.