[en] Hydrogels with protein-polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural polymers remains a challenge due to their weak structural characteristics. In this work, we optimized the fabrication strategy of a hydrogel composite, comprising gelatin and sodium alginate (Gel-SA), by varying reaction parameters. Magnetite (Fe3O4) nanoparticles were incorporated to enhance the mechanical stability and structural integrity of the scaffold. The changes in hydrogel stiffness and viscoelastic properties due to variations in polymer mixing ratio, crosslinking time, and heating cycle, both before and after nanoparticle incorporation, were compared. FTIR spectra of crosslinked hydrogels confirmed physical interactions of Gel-SA, metal coordination bonds of alginate with Ca2+, and magnetite nanoparticles. Tensile and rheology tests confirmed that even at low magnetite concentration, the Gel-SA-Fe3O4 hydrogel exhibits mechanical properties comparable to soft tissues. This work has demonstrated enhanced resilience of magnetite-incorporated Gel-SA hydrogels during the heating cycle, compared to Gel-SA gel, as thermal stability is a significant concern for hydrogels containing gelatin. The interactions of thermoreversible gelatin, anionic alginate, and nanoparticles result in dynamic hydrogels, facilitating their use as viscoelastic acellular matrices.
Disciplines :
Materials science & engineering
Author, co-author :
Gigimon, Anet Vadakken ; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles-ULB, Avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium
Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles ; Institute of Materials Research IMO-IMOMEC, Hasselt University, 3500 Hasselt, Belgium
Perfetti, Claire ; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles-ULB, Avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium
Hendrick, Patrick; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles-ULB, Avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium ; Aero-Thermo-Mechanics Department, Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium
Iorio, Carlo S ; Centre for Research and Engineering in Space Technologies, Université Libre de Bruxelles-ULB, Avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium
Language :
English
Title :
Fabrication of Protein-Polysaccharide-Based Hydrogel Composites Incorporated with Magnetite Nanoparticles as Acellular Matrices.
Publication date :
24 September 2025
Journal title :
International Journal of Molecular Sciences
ISSN :
1661-6596
eISSN :
1422-0067
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
The authors would like to extend sincere appreciation to Omar El Bantli from 4MAT\u2014Engineering, Characterization, Synthesis, and Recycling for his invaluable technical assistance in the experimental part. His expertise and support have played a crucial role in the successful execution of this work. We would also like to express our gratitude to fellow researchers for sharing resources, workspace, and referring us to relevant resources to facilitate the research. The authors thank Michel Luhmer and Ga\u00EBl De Leener (Universit\u00E9 libre de Bruxelles\u2014ULB) for the acquisition and interpretation of the H NMR spectrum of sodium alginate (the NMR spectrometer was funded by the Fonds de la Recherche Scientifique (F.R.S.-FNRS\u2014GEQ2011-2.5014.12) and the Fonds d\u2019Encouragement \u00E0 la Recherche (FER-ULB).). We also thank the Centre d\u2019Instrumentation en Resonance Magn\u00E9tique\u2014CIREM (Universit\u00E9 libre de Bruxelles\u2014ULB, Belgium) for providing access to its infrastructure. The authors gratefully acknowledge the support of Nathalie Wauthoz and the technical assistance of the laboratory technician Lisa Beyers from the Analytical Platform of the Faculty of Pharmacy (APFP), ULB, for their valuable help with the access and operation of the Zetasizer Malvern Nano ZS.This research was funded by ESA Prodex grant number PEA 4000144304-FST 3DBIO.
Tran H.D.N. Park K.D. Ching Y.C. Huynh C. Nguyen D.H. A Comprehensive Review on Polymeric Hydrogel and Its Composite: Matrices of Choice for Bone and Cartilage Tissue Engineering J. Ind. Eng. Chem. 2020 89 58 82 10.1016/j.jiec.2020.06.017
Fang C. Shen Q. Zhang Y. Kanemaru K. Serpe M.J. Light-Degradable Nanocomposite Hydrogels for Antibacterial Wound Dressing Applications J. Mater. Chem. B 2024 12 4686 4697 10.1039/D4TB00222A 38651528
Mehrali M. Thakur A. Pennisi C.P. Talebian S. Arpanaei A. Nikkhah M. Dolatshahi-Pirouz A. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials That Are Compatible with Load-Bearing and Electroactive Tissues Adv. Mater. 2017 29 1603612 10.1002/adma.201603612 27966826
Thoniyot P. Tan M.J. Karim A.A. Young D.J. Loh X.J. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials Adv. Sci. 2015 2 1400010 10.1002/advs.201400010 27980900
Mandal A. Clegg J.R. Anselmo A.C. Mitragotri S. Hydrogels in the Clinic Bioeng. Transl. Med. 2020 5 e10158 10.1002/btm2.10158
Le X.T. Rioux L.-E. Turgeon S.L. Formation and Functional Properties of Protein–Polysaccharide Electrostatic Hydrogels in Comparison to Protein or Polysaccharide Hydrogels Adv. Colloid Interface Sci. 2017 239 127 135 10.1016/j.cis.2016.04.006
Lei H. Zhu C. Fan D. Optimization of Human-like Collagen Composite Polysaccharide Hydrogel Dressing Preparation Using Response Surface for Burn Repair Carbohydr. Polym. 2020 239 116249 10.1016/j.carbpol.2020.116249
McKee T.J. Perlman G. Morris M. Komarova S.V. Extracellular Matrix Composition of Connective Tissues: A Systematic Review and Meta-Analysis Sci. Rep. 2019 9 10542 10.1038/s41598-019-46896-0
Hafezi M. Nouri Khorasani S. Zare M. Esmaeely Neisiany R. Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions Polymers 2021 13 4199 10.3390/polym13234199
Mondal A. Gebeyehu A. Miranda M. Bahadur D. Patel N. Ramakrishnan S. Rishi A.K. Singh M. Characterization and Printability of Sodium Alginate -Gelatin Hydrogel for Bioprinting NSCLC Co-Culture Sci. Rep. 2019 9 19914 10.1038/s41598-019-55034-9
Skopinska-Wisniewska J. Tuszynska M. Kaźmierski Ł. Bartniak M. Bajek A. Gelatin–Sodium Alginate Hydrogels Cross-Linked by Squaric Acid and Dialdehyde Starch as a Potential Bio-Ink Polymers 2024 16 2560 10.3390/polym16182560
Alipal J. Mohd Pu’ad N.A.S. Lee T.C. Nayan N.H.M. Sahari N. Basri H. Idris M.I. Abdullah H.Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation Mater. Today Proc. 2021 42 240 250 10.1016/j.matpr.2020.12.922
Wu E. Huang L. Shen Y. Wei Z. Li Y. Wang J. Chen Z. Application of Gelatin-Based Composites in Bone Tissue Engineering Heliyon 2024 10 e36258 10.1016/j.heliyon.2024.e36258
Pulat M. Akalin G.O. Preparation and Characterization of Gelatin Hydrogel Support for Immobilization of Candida Rugosa Lipase Artif. Cells Nanomed. Biotechnol. 2013 41 145 151 10.3109/10731199.2012.696070
Balakrishnan B. Joshi N. Jayakrishnan A. Banerjee R. Self-Crosslinked Oxidized Alginate/Gelatin Hydrogel as Injectable, Adhesive Biomimetic Scaffolds for Cartilage Regeneration Acta Biomater. 2014 10 3650 3663 10.1016/j.actbio.2014.04.031
Zhang H. Cheng J. Ao Q. Zhang H. Cheng J. Ao Q. Rodríguez-Argüelles C. Simón-Vázquez R. Marine Drugs Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine Mar. Drugs 2021 19 264 10.3390/md19050264
Vijian R.S. Yusefi M. Shameli K. Plant Extract Loaded Sodium Alginate Nanocomposites for Biomedical Applications: A Review J. Res. Nanosci. Nanotechnol. 2022 6 14 30 10.37934/jrnn.6.1.1430
Heo Y. Akimoto J. Kobatake E. Ito Y. Gelation and Release Behavior of Visible Light-Curable Alginate Polym. J. 2020 52 323 332 10.1038/s41428-019-0280-6
Hu C. Lu W. Mata A. Nishinari K. Fang Y. Ions-Induced Gelation of Alginate: Mechanisms and Applications Int. J. Biol. Macromol. 2021 177 578 588 10.1016/j.ijbiomac.2021.02.086 33617905
Hu C. Lu W. Sun C. Zhao Y. Zhang Y. Fang Y. Gelation Behavior and Mechanism of Alginate with Calcium: Dependence on Monovalent Counterions Carbohydr. Polym. 2022 294 119788 10.1016/j.carbpol.2022.119788 35868759
Li G. Xiao P. Hou S. Huang Y. Graphene Based Self-Healing Materials Carbon 2019 146 371 387 10.1016/j.carbon.2019.02.011
Paramasivam G. Palem V.V. Meenakshy S. Suresh L.K. Gangopadhyay M. Antherjanam S. Sundramoorthy A.K. Advances on Carbon Nanomaterials and Their Applications in Medical Diagnosis and Drug Delivery Colloids Surf. B Biointerfaces 2024 241 114032 10.1016/j.colsurfb.2024.114032 38905812
Pardo A. Gómez-Florit M. Barbosa S. Taboada P. Domingues R.M.A. Gomes M.E. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate ACS Nano 2021 15 175 209 10.1021/acsnano.0c08253 33406360
Taghizadeh S. Tayebi L. Akbarzadeh M. Lohrasbi P. Savardashtaki A. Magnetic Hydrogel Applications in Articular Cartilage Tissue Engineering J. Biomed. Mater. Res. A 2024 112 260 275 10.1002/jbm.a.37620
Bustamante-Torres M. Romero-Fierro D. Estrella-Nuñez J. Arcentales-Vera B. Chichande-Proaño E. Bucio E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review Polymers 2022 14 752 10.3390/polym14040752
Massana Roquero D. Othman A. Melman A. Katz E. Iron(iii)-Cross-Linked Alginate Hydrogels: A Critical Review Mater. Adv. 2022 3 1849 1873 10.1039/D1MA00959A
Czichy C. Spangenberg J. Günther S. Gelinsky M. Odenbach S. Determination of the Young’s Modulus for Alginate-Based Hydrogel with Magnetite-Particles Depending on Storage Conditions and Particle Concentration J. Magn. Magn. Mater. 2020 501 166395 10.1016/j.jmmm.2020.166395
Haider H. Yang C.H. Zheng W.J. Yang J.H. Wang M.X. Yang S. Zrínyi M. Osada Y. Suo Z. Zhang Q. et al. Exceptionally Tough and Notch-Insensitive Magnetic Hydrogels Soft Matter 2015 11 8253 8261 10.1039/C5SM01487E 26350404
Dias A.M.G.C. Hussain A. Marcos A.S. Roque A.C.A. A Biotechnological Perspective on the Application of Iron Oxide Magnetic Colloids Modified with Polysaccharides Biotechnol. Adv. 2011 29 142 155 10.1016/j.biotechadv.2010.10.003
Pham A.N. Rose A.L. Feitz A.J. Waite T.D. Kinetics of Fe(III) Precipitation in Aqueous Solutions at PH 6.0–9.5 and 25°C Geochim. Cosmochim. Acta 2006 70 640 650 10.1016/j.gca.2005.10.018
Grasdalen H. High-Field, 1H-n.m.r. Spectroscopy of Alginate: Sequential Structure and Linkage Conformations Carbohydr. Res. 1983 118 255 260 10.1016/0008-6215(83)88053-7
Grasdalen H. Larsen B. Smidsrød O. A p.m.r. Study of the Composition and Sequence of Uronate Residues in Alginates Carbohydr. Res. 1979 68 23 31 10.1016/S0008-6215(00)84051-3
Davis T.A. Llanes F. Volesky B. Diaz-Pulido G. McCook L. Mucci A. 1H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption Appl. Biochem. Biotechnol. 2003 110 75 90 10.1385/ABAB:110:2:75
Cuadros T.R. Erices A.A. Aguilera J.M. Porous Matrix of Calcium Alginate/Gelatin with Enhanced Properties as Scaffold for Cell Culture J. Mech. Behav. Biomed. Mater. 2015 46 331 342 10.1016/j.jmbbm.2014.08.026
Smidsrød O. Glover R.M. Whittington S.G. The Relative Extension of Alginates Having Different Chemical Composition Carbohydr. Res. 1973 27 107 118 10.1016/S0008-6215(00)82430-1
Draget K.I. Gåserød O. Aune I. Andersen P.O. Storbakken B. Stokke B.T. Smidsrød O. Effects of Molecular Weight and Elastic Segment Flexibility on Syneresis in Ca-Alginate Gels Food Hydrocoll. 2001 15 485 490 10.1016/S0268-005X(01)00046-7
Xin Y. Bligh M.W. Kinsela A.S. Waite T.D. Effect of Iron on Membrane Fouling by Alginate in the Absence and Presence of Calcium J. Membr. Sci. 2016 497 289 299 10.1016/j.memsci.2015.09.023
Peng K. Wang W. Zhang J. Ma Y. Lin L. Gan Q. Chen Y. Feng C. Preparation of Chitosan/Sodium Alginate Conductive Hydrogels with High Salt Contents and Their Application in Flexible Supercapacitors Carbohydr. Polym. 2022 278 118927 10.1016/j.carbpol.2021.118927
Varela-Feijoo A. Ponton A. Study of the Tunable Mechanical and Swelling Properties of Magnetic Sensitive Calcium Alginate Nanocomposite Hydrogels Rheol. Acta 2023 62 157 170 10.1007/s00397-023-01384-1
Wong T.W. Chan L.W. Kho S.B. Heng P.W.S. Design of Controlled-Release Solid Dosage Forms of Alginate and Chitosan Using Microwave J. Control. Release 2002 84 99 114 10.1016/S0168-3659(02)00237-7 12468214
Saarai A. Kasparkova V. Sedlacek T. Saha P. On the Development and Characterisation of Crosslinked Sodium Alginate/Gelatine Hydrogels J. Mech. Behav. Biomed. Mater. 2013 18 152 166 10.1016/j.jmbbm.2012.11.010 23274732
Perkasa D.P. Erizal E. Purwanti T. Tontowi A.E. Characterization of Semi-Interpenetrated Network Alginate/Gelatin Wound Dressing Crosslinked at Sol Phase Indones. J. Chem. 2018 18 367 10.22146/ijc.25710
Serafin A. Culebras M. Collins M.N. Synthesis and Evaluation of Alginate, Gelatin, and Hyaluronic Acid Hybrid Hydrogels for Tissue Engineering Applications Int. J. Biol. Macromol. 2023 233 123438 10.1016/j.ijbiomac.2023.123438 36709805
Gaihre B. Khil M. Lee D. Kim H. Gelatin-Coated Magnetic Iron Oxide Nanoparticles as Carrier System: Drug Loading and in Vitro Drug Release Study Int. J. Pharm. 2009 365 180 189 10.1016/j.ijpharm.2008.08.020
Wong M. Siegrist M. Wang X. Hunziker E. Development of Mechanically Stable Alginate/Chondrocyte Constructs: Effects of Guluronic Acid Content and Matrix Synthesis J. Orthop. Res. 2001 19 493 499 10.1016/S0736-0266(00)90023-8
Enobakhare B. Bader D.L. Lee D.A. Concentration and M/G Ratio Influence the Physiochemical and Mechanical Properties of Alginate Constructs for Tissue Engineering J. Appl. Biomater. Biomech. 2006 4 87 96
Suarez-Arnedo A. Sarmiento P. Cruz J.C. Munoz-Camargo C. Salcedo F. Groot H. Narvaez D.M. 3D Alginate Hydrogels with Controlled Mechanical Properties for Mammalian Cell Encapsulation Proceedings of the 2018 IX International Seminar of Biomedical Engineering (SIB) Bogota, Colombia 16–18 May 2018 IEEE Bogota, Colombia 2018 1 5 10.1109/SIB.2018.8467745
ASTM Committee Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension [D412-98] American National Standards Institute New York, NY, USA 1998