Low-cost austenitic complex concentrated alloy with deformation-induced plasticity and nanoprecipitate as a strategy to enhance energy absorption at cryogenic temperature: Computational modeling and experimental validation - 2026
Low-cost austenitic complex concentrated alloy with deformation-induced plasticity and nanoprecipitate as a strategy to enhance energy absorption at cryogenic temperature: Computational modeling and experimental validation
Oñate, Angelo; Sanhueza, Juan Pablo; Wackerling, Diegoet al.
2026 • In Journal of Alloys and Compounds, 1053, p. 186237
[en] The development of multicomponent alloys for cryogenic applications requires reliable prediction of phase stability to ensure adequate toughness at low temperatures. This is critical to address the embrittlement phenomenon observed in conventional alloys under cryogenic conditions, as in the case of austenitic stainless steels such as 304 L and 316 L, which suffer toughness degradation due to the formation of martensitic (α′) phase. In this context, the present work focused on the development of a complex concentrated alloy (CCA) based on the FeCrNiCuTiVC system, fabricated by induction melting under an argon-controlled atmosphere, using primarily recycled stainless steel and ferroalloys as raw materials. The alloy design was carried out through an integrated approach combining machine learning techniques (Random Forest and XGBoost) trained on a robust database of 2591 records, together with thermodynamic predictions via CALPHAD using the TCHEA6 database. The resulting alloy exhibited an austenitic matrix with fine-scale precipitate-like features and the formation of σ phase. Tensile tests revealed an elongation of ∼82 % and a strength–ductility product (PSE) of 40.1 GPa·%, evidencing high damage tolerance. Nanoindentation and microhardness results indicated that the σ-phase precipitates do not exert a significant macroscopic effect in this alloy, which accounts for its remarkable deformability. Furthermore, nanoindentation tests revealed pop-in events characteristic of twinning, suggesting the activation of a twinning-induced plasticity (TWIP) mechanism. This was evidenced by SPM analyses of the nanoindentation imprint and by FE-SEM observations in the post-fracture sample. Similarly, fine-grained regions were identified in the area adjacent to the fracture, originating from subgrain formation caused by the severe dislocation interactions within the material. This explains the high ductility observed and validates the pronounced strain-hardening behavior of the alloy. Finally, Charpy impact tests demonstrated energy absorption of 205 J/cm² at room temperature and 226 J/cm² at 77 K, indicating not only excellent toughness at cryogenic temperatures but also the absence of a ductile-to-brittle transition, even in the presence of intermetallic phases. This behavior is attributed to the synergy between the TWIP mechanism and nanoprecipitates, both of which enhance the mechanical response and suppress premature embrittlement potentially induced by the σ phase, given its reduced fraction in the microstructure.
Disciplines :
Materials science & engineering
Author, co-author :
Oñate, Angelo ; Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Concepción, Chile
Sanhueza, Juan Pablo; Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Concepción, Chile
Wackerling, Diego; Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Concepción, Chile
Lanziotti, Carlos; Department of Mechanical Engineering (DIM), Faculty of Engineering, Universidad de Concepción, Concepción, Chile
Rojas, David; Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Concepción, Chile
Tuninetti, Victor ; Université de Liège - ULiège > Département ArGEnCo ; Department of Mechanical Engineering, Universidad de La Frontera, Temuco, Chile
Seidou, Abdul Herrim ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Language :
English
Title :
Low-cost austenitic complex concentrated alloy with deformation-induced plasticity and nanoprecipitate as a strategy to enhance energy absorption at cryogenic temperature: Computational modeling and experimental validation
Zhou, Y.H., et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures. Acta Mater., 268, Apr. 2024, 119770, 10.1016/j.actamat.2024.119770.
Wu, Q., et al. Cryogenic dynamic-mechanical property and microstructure of a selective laser melting FeCoNiCrMo0.2 high-entropy alloy. Mater. Today Commun., 39, Jun. 2024, 108928, 10.1016/j.mtcomm.2024.108928.
Jo, Y.H., Choi, Y.T., Kim, D.G., Han, J., Lee, S., Toughness behavior and deformation mechanisms in FCC-based Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys: Insights from instrumented Charpy impact tests. J. Mater. Res. Technol. 30 (May 2024), 1758–1767, 10.1016/j.jmrt.2024.03.211.
Sun, L., et al. Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment. Sci. Adv., 10(48), Nov. 2024, 10.1126/sciadv.adq6398.
An, Z., et al. Achieving superior combined cryogenic strength and ductility in a high-entropy alloy via the synergy of low stacking fault energy and multiscale heterostructure. Scr. Mater., 239, Jan. 2024, 115809, 10.1016/j.scriptamat.2023.115809.
Jiang, K., et al. Dynamic mechanical responses of the Al0·1CoCrFeNi high entropy alloy at cryogenic temperature. Mater. Sci. Eng. A, 797, Oct. 2020, 140125, 10.1016/j.msea.2020.140125.
Wang, J., Webley, P.A., Hughes, T.J., Thermodynamic modelling of low fill levels in cryogenic storage tanks for application to liquid hydrogen maritime transport. Appl. Therm. Eng., 256, Nov. 2024, 124054, 10.1016/j.applthermaleng.2024.124054.
Kim, J., et al. Technical feasibility of large-scale transportable liquid hydrogen export terminal. Int J. Hydrog. Energy 66 (May 2024), 499–511, 10.1016/j.ijhydene.2024.03.343.
Fussik, R., Egels, G., Theisen, W., Weber, S., Stacking fault energy in relation to hydrogen environment embrittlement of metastable austenitic stainless crni-steels. Metals (Basel), 11(8), Jul. 2021, 1170, 10.3390/met11081170.
Michler, T., Naumann, J., Balogh, M.P., Hydrogen environment embrittlement of solution treated Fe–Cr–Ni super alloys. Mater. Sci. Eng. A 607 (Jun. 2014), 71–80, 10.1016/j.msea.2014.03.134.
Chen, S., Zhao, M., Rong, L., Hydrogen-induced cracking behavior of twin boundary in γ′ phase strengthened Fe–Ni based austenitic alloys. Mater. Sci. Eng. A 561 (Jan. 2013), 7–12, 10.1016/j.msea.2012.10.069.
Fukunaga, A., Hydrogen embrittlement behaviors during SSRT tests in gaseous hydrogen for cold-worked type 316 austenitic stainless steel and iron-based superalloy A286 used in hydrogen refueling station. Eng. Fail Anal., 160, Jun. 2024, 108158, 10.1016/j.engfailanal.2024.108158.
Zhang, L., Wen, M., Imade, M., Fukuyama, S., Yokogawa, K., Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater. 56:14 (Aug. 2008), 3414–3421, 10.1016/j.actamat.2008.03.022.
Jiang, M., et al. High cryogenic ductility of the high-entropy alloy CoCrFeNiAl0.1Ti0.05 at 77 K. J. Appl. Phys., 134(18), Nov. 2023, 10.1063/5.0172237.
Zhou, D., Shi, C., Wang, C., Sheng, R., Li, W., Tong, Y., Tensile properties of a non-equiatomic Ni–Co–V medium entropy alloy at cryogenic temperature. Metals (Basel), 14(5), May 2024, 590, 10.3390/met14050590.
Cabrera, M., Oropesa, Y., Sanhueza, J.P., Tuninetti, V., Oñate, A., Multicomponent alloys design and mechanical response: from high entropy alloys to complex concentrated alloys. Mater. Sci. Eng. R Rep., 161, Dec. 2024, 100853, 10.1016/J.MSER.2024.100853.
Oñate, A., Sanhueza, J.P., Ramirez, J., Medina, C., Melendrez, M.F., Rojas, D., Design of Fe36.29Cr28.9Ni26.15Cu4.17Ti1.67V2.48C0.46 HEA using a new criterion based on VEC: microstructural study and multiscale mechanical response. Mater. Today Commun., 35, Jun. 2023, 105681, 10.1016/J.MTCOMM.2023.105681.
Oñate, A., et al. Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases. J. Alloy. Compd., 962, Nov. 2023, 171224, 10.1016/J.JALLCOM.2023.171224.
Oñate, A., et al. New analytical parameters for B2 phase prediction as a complement to multiclass phase prediction using machine learning in multicomponent alloys: a computational approach with experimental validation. J. Alloy. Compd., 1022, Apr. 2025, 179950, 10.1016/j.jallcom.2025.179950.
Yan, Y., Hu, X., Liao, Y., Zhou, Y., He, W., Zhou, T., Recent machine learning-driven investigations into high entropy alloys: a comprehensive review. J. Alloy. Compd., 1010, Jan. 2025, 177823, 10.1016/j.jallcom.2024.177823.
Yang, F., Dong, L., Cai, L., Hu, X., Fang, F., Mechanical properties of FeMnCoCr high entropy alloy alloyed with C/Si at low temperatures. J. Alloy. Compd., 859, Apr. 2021, 157876, 10.1016/J.JALLCOM.2020.157876.
Rizi, M.S., Minouei, H., Lee, B.J., Pouraliakbar, H., Toroghinejad, M.R., Hong, S.I., Hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy. Mater. Sci. Eng. A, 824, Sep. 2021, 141803, 10.1016/J.MSEA.2021.141803.
Tian, X., Zhang, Y., Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis. Mater. Sci. Eng. A 516:1–2 (Aug. 2009), 73–77, 10.1016/J.MSEA.2009.02.031.
Olson, G.B., Cohen, M., A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall. Trans. A 7:12 (Dec. 1976), 1897–1904, 10.1007/BF02659822/METRICS.
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7:6 (Jun. 1992), 1564–1583, 10.1557/JMR.1992.1564.
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. 1992 7:6 J. Mater. Res. 7:6 (Jan. 2011), 1564–1583, 10.1557/JMR.1992.1564.
Zhou, P.F., Xiao, D.H., Li, G., Song, M., Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations. J. Mater. Eng. Perform. 28:5 (May 2019), 2620–2629, 10.1007/S11665-019-04092-1/TABLES/3.
Z.M. Jiao, M.Y. Chu, H.J. Yang, Z.H. Wang, and J.W. Qiao, “Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy,” https://doi.org/10.1179/1743284715Y.0000000048, vol. 31, no. 10, pp. 1244–1249, Jul. 2015, doi: 10.1179/1743284715Y.0000000048.
Oliver, W.C., Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19:1 (2004), 3–20, 10.1557/JMR.2004.19.1.3.
Jakes, J.E., Stone, D.S., Best practices for quasistatic berkovich nanoindentation of Wood Cell Walls. Forests, 12(12), Dec. 2021, 1696, 10.3390/F12121696.
Poletti, M.G., Battezzati, L., Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75 (Aug. 2014), 297–306, 10.1016/j.actamat.2014.04.033.
Dong, Y., Lu, Y., Jiang, L., Wang, T., Li, T., Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics (Barking) 52 (Sep. 2014), 105–109, 10.1016/J.INTERMET.2014.04.001.
Wangab, Zhijun, Qiuc, Weifeng, Yanga, Yong, Liu, C.T., Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics(Barking) 64 (Sep. 2015), 63–69, 10.1016/J.INTERMET.2015.04.014.
Tsai, M.-H., Chang, K.-C., Li, J.-H., Tsai, R.-C., Cheng, A.-H., A second criterion for sigma phase formation in high-entropy alloys. Mater. Res Lett. 4:2 (Oct. 2016), 90–95.
Oñate, A., et al. Sigma phase stabilization by Nb doping in a new high-entropy alloy in the FeCrMnNiCu system: a study of phase prediction and nanomechanical response. Metals, 14(1), Jan. 2024, 74, 10.3390/MET14010074.
Han, B., et al. Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr. Mater. 148 (Apr. 2018), 42–46, 10.1016/J.SCRIPTAMAT.2018.01.025.
Fadok, J., Advanced gas turbine materials, design and technology. Adv. Power Plant Mater. Des. Technol., 2010, 3–31, 10.1533/9781845699468.1.3.
Rosen, S., Sprang, P.G., The structure of the γ’-phase in nickel-base superalloys. Adv. XRay Anal., 1966, 131–141, 10.1007/978-1-4684-7633-0_11.
Finet, L., Esin, V.A., Maurel, V., Nazé, L., Composition and temperature stability of η and δ phases for future nickel-base superalloys for turbine disks application. Miner. Met. Mater. Ser., 2020, 112–121, 10.1007/978-3-030-51834-9_11/TABLES/1.
A. Di Gianfrancesco“Alloy 263,” Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, pp. 571–599Jan. 2017, 57159910.1016/B978-0-08-100552-1.00017-8.
Premkumar, M., Prasad, K.S., Singh, A.K., Structure and stability of the B2 phase in Ti–25Al–25Zr alloy. Intermetallics (Barking) 17:3 (Mar. 2009), 142–145, 10.1016/J.INTERMET.2008.10.009.
Gschneidner, K.A., et al. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Mater. 57:19 (Nov. 2009), 5876–5881, 10.1016/J.ACTAMAT.2009.08.012.
E.O. Hall and S.H. Algie, “The Sigma Phase,” http://dx.doi.org/10.1179/mtlr.1966.11.1.61, vol. 11, no. 1, pp. 61–88, 2013, doi: 10.1179/MTLR.1966.11.1.61.
Yang, Q., Yan, D., Zhang, Y., Gan, K., Li, Z., Formation mechanisms of two types of sigma phases and the effects on mechanical behavior in a quaternary metastable high-entropy alloy. Mater. Sci. Eng. A, 894, Mar. 2024, 146224, 10.1016/J.MSEA.2024.146224.
Bai, T.X., et al. Fine regulation of sigma phase achieves excellent mechanical properties in Co-free CrFeNiSi0.2 medium entropy alloy. J. Mater. Res. Technol. 36 (May 2025), 9274–9282, 10.1016/J.JMRT.2025.05.151.
He, M.Y., Shen, Y.F., Jia, N., Liaw, P.K., C and N doping in high-entropy alloys: a pathway to achieve desired strength-ductility synergy. Appl. Mater. Today, 25, Dec. 2021, 101162, 10.1016/J.APMT.2021.101162.
Mozafari, A., Fu, B., Chalapathi, D., Abdolvand, H., Characterization of IN738LC using in situ nanoindentation and crystal plasticity modeling. Mater. Des., 257, Sep. 2025, 114378, 10.1016/J.MATDES.2025.114378.
Ohmura, T., Wakeda, M., Pop-in phenomenon as a fundamental plasticity probed by nanoindentation technique. Materials, 14(8), Apr. 2021, 1879, 10.3390/MA14081879.
Castañeda, J.A., Zambrano, O.A., Souza, R.M., Coronado, J.J., Rodriguez, S.A., Unveiling the mechanism of cyclic indentation in a Fe–Mn–Al–C alloy. 56:11 Metall. Mater. Trans. A 56:11 (Aug. 2025), 4913–4929, 10.1007/S11661-025-07923-0.
Ye, X.X., et al. Study of twinning behavior of powder metallurgy Ti-Si alloy by interrupted in-situ tensile tests. Mater. Sci. Eng. A 679 (Jan. 2017), 543–553, 10.1016/J.MSEA.2016.10.070.
Yang, M., et al. Fine-grained TWIP steel prepared by powder metallurgy. J. Phys. Conf. Ser., 2951(1), Feb. 2025, 012023, 10.1088/1742-6596/2951/1/012023.
Jabłońska, M.B., Jasiak, K., Kowalczyk, K., Skwarski, M., Rodak, K., Gronostajski, Z., The influence of the heat generation during deformation on the mechanical properties and microstructure of the selected TWIP steels. Int. J. Mater. Form. 16:3 (May 2023), 1–17, 10.1007/S12289-023-01753-4/FIGURES/20.
Fan, Q., Gan, K., Yan, D., Li, Z., Nanoindentation creep behavior of diverse microstructures in a pre-strained interstitial high-entropy alloy by high-throughput mapping. Mater. Sci. Eng. A, 856, Oct. 2022, 143988, 10.1016/J.MSEA.2022.143988.
Shen, Q., Kong, X., Chen, X., Significant transitions of microstructure and mechanical properties in additively manufactured Al–Co–Cr–Fe–Ni high-entropy alloy under heat treatment. Mater. Sci. Eng. A, 815, May 2021, 141257, 10.1016/J.MSEA.2021.141257.
Aguilar-Hurtado, J.Y., et al. Experimental and computational analysis of stacking fault energy in B-doped Fe50−XMn30Co10Cr10BX multi-principal elements alloys. J. Alloy. Compd., 969, Dec. 2023, 172428, 10.1016/J.JALLCOM.2023.172428.
Woo, W., et al. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction. Sci. Rep. 2020, 10(1), Jan. 2020, 1350, 10.1038/s41598-020-58273-3.
Voyiadjis, G.Z., Yaghoobi, M., Review of nanoindentation size effect: experiments and atomistic simulation. Crystals, 7(10), Oct. 2017, 321, 10.3390/CRYST7100321.
Han, K., et al. Nanoindentation creep behavior of high entropy superalloy with γ/γ′ microstructure under various loads and temperatures. J. Alloy. Compd., 1031, Jun. 2025, 180985, 10.1016/J.JALLCOM.2025.180985.
Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., Zhang, T.H., Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures. Int. J. Refract Met. Hard Mater. 54 (Jan. 2016), 395–400, 10.1016/J.IJRMHM.2015.08.010.
Wei, B., Zhang, T., Li, W., Xing, D., Zhang, L., Wang, Y., Indentation creep behavior in Ce-based bulk metallic glasses at room temperature. Mater. Trans. 46:12 (Dec. 2005), 2959–2962, 10.2320/MATERTRANS.46.2959.
Yu, P.F., et al. Room-temperature creep resistance of Co-based metallic glasses. Scr. Mater. 90–91:1 (Nov. 2014), 45–48, 10.1016/J.SCRIPTAMAT.2014.07.013.
Sharma, A., et al. High-temperature nanoindentation creep studies on castable and sintered nanostructured low-activation ferritic-martensitic alloys. J. Nucl. Mater., 611, Jun. 2025, 155804, 10.1016/J.JNUCMAT.2025.155804.
Sadeghilaridjani, M., Mukherjee, S., High-temperature nano-indentation creep behavior of multi-principal element alloys under static and dynamic loads. Metals, 10(2), Feb. 2020, 250, 10.3390/MET10020250.
Wang, J., Yang, C., Liu, Y., Li, Y., Xiong, Y., Using nanoindentation to characterize the mechanical and creep properties of shale: load and loading strain rate effects. ACS Omega 7:16 (Apr. 2022), 14317–14331, 10.1021/ACSOMEGA.2C01190/ASSET/IMAGES/LARGE/AO2C01190_0015.JPEG.
Fan, Q., Gan, K., Yan, D., Li, Z., Nanoindentation creep behavior of diverse microstructures in a pre-strained interstitial high-entropy alloy by high-throughput mapping. Mater. Sci. Eng. A, 856, Oct. 2022, 143988, 10.1016/J.MSEA.2022.143988.
Zeng, L., Zeng, L., Gao, R., You, C., Liu, B., Achieving ultra-high strength in a face-centered-cubic FeCrCoNi high entropy alloy through dense nanotwins bundles structure prepared by cryo-rolling. Intermetallics (Barking), 148, Sep. 2022, 107638, 10.1016/J.INTERMET.2022.107638.
Pan, X., Qian, G., Hong, Y., Nanograin formation in dimple ridges due to local severe-plastic-deformation during ductile fracture. Scr. Mater., 194, Mar. 2021, 113631, 10.1016/J.SCRIPTAMAT.2020.113631.
He, J.Y., et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102 (Jan. 2016), 187–196, 10.1016/J.ACTAMAT.2015.08.076.
Li, W., Xie, D., Li, D., Zhang, Y., Gao, Y., Liaw, P.K., Mechanical behavior of high-entropy alloys. Prog. Mater. Sci., 118, May 2021, 100777, 10.1016/J.PMATSCI.2021.100777.
Park, W.S., Chun, M.S., Han, M.S., Kim, M.H., Lee, J.M., Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: part I—experimental investigations. Mater. Sci. Eng. A 528:18 (Jul. 2011), 5790–5803, 10.1016/J.MSEA.2011.04.032.
Kumar, N., et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86 (Dec. 2015), 598–602, 10.1016/J.MATDES.2015.07.161.
Li, W.P., Wang, X.G., Liu, B., Fang, Q.H., Jiang, C., Fracture mechanisms of a Mo alloyed CoCrFeNi high entropy alloy: in-situ SEM investigation. Mater. Sci. Eng. A 723 (Apr. 2018), 79–88, 10.1016/J.MSEA.2018.03.032.
Wang, Y.Morris, et al. Defective twin boundaries in nanotwinned metals. 12:8 Nat. Mater. 12:8 (May 2013), 697–702, 10.1038/nmat3646.
Sun, L., He, X., Lu, J., Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Comput. Mater. 2018, 4(1), Feb. 2018, 6, 10.1038/s41524-018-0062-2.
Xie, P., et al. A nanotwinned surface layer generated by high strain-rate deformation in a TRIP steel. Mater. Des. 80 (Sep. 2015), 144–151, 10.1016/J.MATDES.2015.05.017.
Huang, G., Li, B., Chen, Y., Xuan, F., Nanotwining induced by tensile fatigue and dynamic impact of laser powder bed fusion additively manufactured CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 183 (Jun. 2024), 241–257, 10.1016/J.JMST.2023.10.028.
Li, J., et al. Crack-tip plasticity mediated grain refinement and its resisting effect on the fatigue short crack growth. Int. J. Plast., 181, Oct. 2024, 104102, 10.1016/J.IJPLAS.2024.104102.
Zhu, B., et al. Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy. J. Mater. Sci. Technol. 50 (Aug. 2020), 59–65, 10.1016/J.JMST.2020.03.006.
composite, Zhiming, Guo, et al. Effect of carbon content on cryogenic mechanical properties of CoCrFeMnNi high entropy alloy. IOP Conf. Ser. Mater. Sci. Eng., 1014(1), Jan. 2021, 012050, 10.1088/1757-899X/1014/1/012050.
Lin, D., Xu, L., Jing, H., Han, Y., Zhao, L., Minami, F., Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Addit. Manuf., 32, Mar. 2020, 101058, 10.1016/J.ADDMA.2020.101058.
Kim, J.H., Lim, K.R., Won, J.W., Na, Y.S., Kim, H.-S., Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater. Sci. Eng. A 712 (Jan. 2018), 108–113, 10.1016/j.msea.2017.11.081.
Xia, S.Q., Gao, M.C., Zhang, Y., Abnormal temperature dependence of impact toughness in Al CoCrFeNi system high entropy alloys. Mater. Chem. Phys. 210 (May 2018), 213–221, 10.1016/j.matchemphys.2017.06.021.
Wang, Y., et al. Cryogenic toughness in a low-cost austenitic steel. Commun. Mater., 2(1), Apr. 2021, 44, 10.1038/s43246-021-00149-8.
Curtze, S., Kuokkala, V.-T., Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 58:15 (Sep. 2010), 5129–5141, 10.1016/j.actamat.2010.05.049.
Jiang, W., et al. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures. Mater. Sci. Eng. A, 837, Mar. 2022, 142735, 10.1016/J.MSEA.2022.142735.
Li, D., Zhang, Y., The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics (Barking) 70 (Mar. 2016), 24–28, 10.1016/j.intermet.2015.11.002.
Bae, J.W., et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Mater. 161 (Dec. 2018), 388–399, 10.1016/j.actamat.2018.09.057.
Li, J., et al. Cryogenic impact property of a high-strength-ductility 304L stainless steel with heterogeneous lamella structure. J. Mater. Res. Technol. 24 (May 2023), 1401–1409, 10.1016/j.jmrt.2023.03.081.
Li, J., et al. Effects of geometric dimension and grain size on impact properties of 316L stainless steel. Mater. Lett., 284, Feb. 2021, 128908, 10.1016/j.matlet.2020.128908.
Lee, G.-H., et al. Phase transformation and deformation mechanisms of 304L stainless steel under tensile and charpy impact testing at varying temperatures. Crystals (Basel), 15(4), Apr. 2025, 360, 10.3390/cryst15040360.
Mehranpour, M.S., et al. Exceptional strength-ductility synergy in the novel metastable FeCoCrNiVSi high-entropy alloys via tuning the grain size dependency of the transformation-induced plasticity effect. Int. J. Plast., 182, Nov. 2024, 104115, 10.1016/j.ijplas.2024.104115.
Eleti, R.R., Klimova, M., Tikhonovsky, M., Stepanov, N., Zherebtsov, S., Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys. Sci. Rep. 10:1 (Aug. 2020), 1–8, 10.1038/s41598-020-70298-2.
Nguyen, L.T.H., Hwang, J.-S., Kim, M.-S., Kim, J.-H., Kim, S.-K., Lee, J.-M., Charpy impact properties of hydrogen-exposed 316l stainless steel at ambient and cryogenic temperatures. Metals (Basel), 9(6), May 2019, 625, 10.3390/met9060625.
Nam, Y.-H., Park, J.-S., Baek, U.-B., Suh, J.-Y., Nahm, S.-H., Low-temperature tensile and impact properties of hydrogen-charged high-manganese steel. Int. J. Hydrog. Energy 44:13 (Mar. 2019), 7000–7013, 10.1016/j.ijhydene.2019.01.065.
Yoon, K.N., Oh, H., Lee, J.I., Park, E.S., Development of low-temperature impact-damage tolerant high entropy alloy with sequential multi-deformation mechanisms. J. Appl. Phys., 133(17), May 2023, 10.1063/5.0147689/2887759.
Li, D., Zhang, Y., The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics (Barking) 70 (Mar. 2016), 24–28, 10.1016/j.intermet.2015.11.002.