methods: observational; techniques: spectroscopic; eclipses; planets; and satellites: atmospheres; planets and satellites: gaseous planets; planets and satellites: individual: HAT-P-12 b; Earth and Planetary; Astrophysics
Abstract :
[en] Context. The chemical composition of warm gas giant exoplanet atmospheres (with T<SUB>eq</SUB> < 1000 K) is not well known due to the lack of observational constraints. Aims. HAT-P-12 b is a warm, sub-Saturn-mass transiting exoplanet that is ideal for transmission spectroscopy. We aim to characterise its atmosphere and probe the presence of carbonaceous species using near-infrared observations. Methods. One transit of HAT-P-12 b was observed in spectroscopy with JWST NIRSpec in the 2.87─5.10 µm range with a resolving power of ~1000. The JWST data are combined with archival observations from HST WFC3 covering the 1.1─1.7 µm range. The data were analysed using two data reduction pipelines and two atmospheric retrieval tools. Atmospheric simulations using chemical forward models were performed to interpret the spectra. Results. CO<SUB>2</SUB>, CO, and H<SUB>2</SUB>O are detected at 12.2, 4.1, and 6.0 σ confidence, respectively. Their volume mixing ratios are consistent with an atmosphere of ~10× solar metallicity and production of CO<SUB>2</SUB> by photochemistry. CH<SUB>4</SUB> is not detected and seems to be lacking, which could be due to a high intrinsic temperature with strong vertical mixing or other phenomena. SO<SUB>2</SUB> is also not detected and its production seems limited by low upper atmosphere temperatures (~500 K at P ≲ 10<SUP>−3</SUP> bar derived from one-dimensional retrievals), insufficient to produce it in detectable quantities (≳ 800 K required according to photochemical models). H<SUB>2</SUB>S is marginally detected using one data analysis method, but not by the other. Retrievals indicate the presence of clouds between 2 and 11 mbar using one data analysis method, and between 5 and 269 mbar using the other. The derived C/O ratio is below unity, but is not well constrained. Conclusions. This study points towards an atmosphere for HAT-P-12 b that could be enriched in carbon and oxygen with respect to its host star, a possibly cold upper atmosphere that may explain the non-detection of SO<SUB>2</SUB>, and a CH<SUB>4</SUB> depletion that is yet to be fully understood. When including the production of CO<SUB>2</SUB> via photochemistry, an atmospheric metallicity that is close to Saturn's can explain the observations. Metallicities inferred for other gas giant exoplanets based on their CO<SUB>2</SUB> mixing ratios may need to account for its photochemical production pathways. This may impact studies on mass-metallicity trends and links between exoplanet atmospheres, interiors, and formation history.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Crouzet, N.; Leiden Observatory, University of Groningen, Kapteyn Astronomical Institute
Edwards, B.; Netherlands Institute for Space Research
Konings, T.; Katholieke University of Leuven, Astronomical Institute
Bouwman, J.; Max-Planck-Institute for Astronomy, Heidelberg
Min, M.; Netherlands Institute for Space Research
Lagage, P.-O.; CEA Saclay, Service d'Astrophysique
Waters, L. B. F. M.; Radboud University Nijmegen, Department of Astronomy and Physics, Netherlands Institute for Space Research
Pye, J. P.; University of Leicester, Department of Physics and Astronomy
Heinke, L.; Katholieke University of Leuven, Astronomical Institute, University of Edinburgh, School of Geosciences, University of Edinburgh, UK
Guedel, M.; University of Vienna, Department of Astronomy, ETH Zurich, Department of Physics
Henning, Th.; Max-Planck-Institute for Astronomy, Heidelberg
Vandenbussche, B.; Katholieke University of Leuven, Astronomical Institute
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Argyriou, I.; Katholieke University of Leuven, Astronomical Institute
Barrado, D.; Center for Astrobiology, Madrid
Boccaletti, A.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Cossou, C.; Institut de Recherche sur les Lois Fondamentales de l'Universe
Coulais, A.; Laboratoire d'Etudes du Rayonnement de la Matiere en Astrophysique
Decin, L.; Katholieke University of Leuven, Astronomical Institute
Gastaud, R.; Institut de Recherche sur les Lois Fondamentales de l'Universe
Glasse, A.; Royal Observatory Edinburgh
Glauser, A. M.; ETH Zurich, Department of Physics
Lahuis, F.; Netherlands Institute for Space Research
Olofsson, G.; Stockholm University, Department of Astronomy
Patapis, P.; ETH Zurich, Department of Physics
Rouan, D.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Royer, P.; Katholieke University of Leuven, Astronomical Institute
Whiteford, N.; American Museum of Natural History, New York
Colina, L.; Centro de Astrobiología (CAB, CSIC-INTA), Carretera de Ajalvir, 8850 Torrejón de Ardoz, Madrid, Spain,
Östlin, G.; Stockholm University, Department of Astronomy
Ray, T. P.; Dublin Institute for Advanced Studies, School of Cosmic Physics
CRDS developers 2022, CRDS: Calibration Reference Data System for HST and JWST, https://github.com/spacetelescope/crds
Cubillos, P., & Blecic, J. 2021a, Pyrat Bay: Python Radiative Transfer in a Bayesian framework, Astrophysics Source Code Library [record ascl:2105.017]
Cubillos, P. E., & Blecic, J. 2021b, MNRAS, 505, 2675
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog: II/246
de Kok, R. J., Brogi, M., Snellen, I. A. G., et al. 2013, A&A, 554, A82
Deibert, E. K., de Mooij, E. J. W., Jayawardhana, R., et al. 2019, AJ, 157, 58
Doyon, R., Hutchings, J. B., Beaulieu, M., et al. 2012, SPIE Conf. Ser., 8442, 84422R
Dyrek, A., Min, M., Decin, L., et al. 2024, Nature, 625, 51
Edwards, B., & Changeat, Q. 2024, ApJ, 962, L30
Edwards, B., Changeat, Q., Tsiaras, A., et al. 2023, ApJS, 269, 31
Espinoza, N., Úbeda, L., Birkmann, S. M., et al. 2023, PASP, 135, 018002
Espinoza, N., Steinrueck, M. E., Kirk, J., et al. 2024, Nature, 632, 1017
Evans-Soma, T. M., Sing, D. K., Barstow, J. K., et al. 2025, Nat. Astron., 9, 845
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Fisher, C., & Heng, K. 2018, MNRAS, 481, 4698
Fletcher, L. N., Gustafsson, M., & Orton, G. S. 2018, ApJS, 235, 24
Foreman-Mackey, D., Luger, R., Agol, E., et al. 2021a, J. Open Source Softw., 6, 3285
Foreman-Mackey, D., Savel, A., Luger, R., et al. 2021b, https://doi.org/18.5281/zenodo.1998447
Fortney, J. J. 2018, Modeling Exoplanetary Atmospheres: An Overview, eds. V. Bozza, L. Mancini, & A. Sozzetti (Cham: Springer International Publishing), 51
Fortney, J. J., Mordasini, C., Nettelmann, N., et al. 2013, ApJ, 775, 80
Fortney, J. J., Visscher, C., Marley, M. S., et al. 2020, AJ, 160, 288
Fortney, J. J., Dawson, R. I., & Komacek, T. D. 2021, J. Geophys. Res. (Planets), 126, e06629
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gaia Collaboration (Vallenari, A., et al.) 2023, A&A, 674, A1
Gordon, K. D., Bohlin, R., Sloan, G. C., et al. 2022, AJ, 163, 267
Guillot, T. 2010, A&A, 520, A27
Guillot, T., & Showman, A. P. 2002, A&A, 385, 156
Guillot, T., Fletcher, L. N., Helled, R., et al. 2023, in Astronomical Society of the Pacific Conference Series, 534, Protostars and Planets VII, eds. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 947
Guilluy, G., Sozzetti, A., Brogi, M., et al. 2019, A&A, 625, A107
Hartman, J. D., Bakos, G. Á., Torres, G., et al. 2009, ApJ, 706, 785
Henning, T., Kamp, I., Samland, M., et al. 2024, PASP, 136, 054302
Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D., & Turnbull, M. C. 2014, AJ, 148, 54
Hobbs, R., Rimmer, P. B., Shorttle, O., & Madhusudhan, N. 2021, MNRAS, 506, 3186
Huang, H., Ormel, C. W., & Min, M. 2024, A&A, 691, A291
Jakobsen, P., Ferruit, P., Alves de Oliveira, C., et al. 2022, A&A, 661, A80
Janson, M., Brandt, T. D., Kuzuhara, M., et al. 2013, ApJ, 778, L4
Jermyn, A. S., Tout, C. A., & Ogilvie, G. I. 2017, MNRAS, 469, 1768
Jiang, C., Chen, G., Pallé, E., et al. 2021, A&A, 656, A114
JWST calibration pipeline developers 2022, jwst: Python library for science observations from the James Webb Space Telescope
JWST Transiting Exoplanet Community Early Release Science Team (Ahrer, E.-M., et al.) 2023, Nature, 614, 649
Kataria, T., Sing, D. K., Lewis, N. K., et al. 2016, ApJ, 821, 9