Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory. - 2025
Cichofactin; Cichopeptin; Cyclic lipopeptides; Gac regulon; Lactuca sativa L. var. capitata; Midrib rot; Lipopeptides; Bacterial Proteins; Type III Secretion Systems; Virulence Factors; Virulence Factors/metabolism; Virulence Factors/genetics; Virulence; Gene Expression Regulation, Bacterial; Lactuca/microbiology; Cichorium intybus/microbiology; Lipopeptides/metabolism; Lipopeptides/genetics; Plant Diseases/microbiology; Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Pseudomonas/pathogenicity; Pseudomonas/genetics; Pseudomonas/metabolism; Type III Secretion Systems/metabolism; Type III Secretion Systems/genetics; Cichorium intybus; Lactuca; Plant Diseases; Pseudomonas; Microbiology; Molecular Biology
Abstract :
[en] Pseudomonas cichorii SF1-54, the causal agent of lettuce midrib rot disease, produces lipopeptides cichofactins and cichopeptins which are important virulence factors. The GacS/GacA two-component system is well known to regulate production of lipopeptides in pseudomonads. Additionally, the functions of the type three secretion system (T3SS) in P. cichorii-plant interactions are not clarified. In this study, we investigated the role of the GacS-regulated lipopeptides and the T3SS in pathogenicity of P. cichorii SF1-54 on two host plants, chicory and lettuce, by constructing mutants in hrpL, which encodes the key sigma factor to control T3SS expression, and gacS. Compared with the wildtype, the hrpL mutant produced lipopeptides at a similar level but the gacS mutant was strongly impaired in lipopeptide production. The mutant deficient in hrpL did not significantly differ from the wildtype in virulence on chicory and lettuce. The gacS mutant exhibited significantly less symptoms on both host plants compared to the wildtype and the hrpL mutant. Intriguingly, the gacS hrpL-double mutant no longer produced lipopeptides, lost virulence and showed impaired colonization on chicory, but was still weakly virulent on lettuce. Thus, contribution of both the GacS-regulated lipopeptides and T3SS to virulence of P. cichorii SF1-54 is host plant dependent.
Disciplines :
Microbiology
Author, co-author :
Huang, Chien-Jui ; Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium, Department of Plant Medicine, National Chiayi University, No. 300, Syuefu Rd., 600355, Chiayi, Taiwan, Republic of China. Electronic address: chienjui.huang@mail.ncyu.edu.tw
Pauwelyn, Ellen; Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium, Inagro Vzw, Ieperseweg 87, 8800, Rumbeke, Belgium
Ongena, Marc ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
F.R.S.-FNRS - Fonds de la Recherche Scientifique UGent - Universiteit Gent CONACYT - National Council of Science and Technology FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Funding text :
This work was financed by the Institute for the Promotion of Innovation through Science and technology in Flanders (IWT-Flanders, grant number 050636), by the Fund for Scientific Research Flanders (FWO Vlaanderen, grant number G000210 N), by the INTERREG IV program France-Wallonie-Vlaanderen (Phytobio project), and by the National Science and Technology Council (NSTC, grant number 112-2313-B-415-006), Republic of China. M.O. is research director at the F.R.S.-FNRS. We thank L. Franzil (Gembloux Agro-Bio Tech), I. Delaere (Ghent University) and R. Houthoofd (Inagro) for technical assistance during the experimental work.This work was financed by the Institute for the Promotion of Innovation through Science and technology in Flanders (IWT-Flanders, grant number 050636), by the Fund for Scientific Research Flanders (FWO Vlaanderen, grant number G.0002.10N), by the INTERREG IV program France-Wallonie-Vlaanderen (Phytobio project), and by the National Science and Technology Council (NSTC, grant number 112-2313-B-415-006), Republic of China. M.O. is research director at the F.R.S.-FNRS. We thank L. Franzil (Gembloux Agro-Bio Tech), I. Delaere (Ghent University) and R. Houthoofd (Inagro) for technical assistance during the experimental work.
Laub, M.T., Goulian, M., Specificity in two-component signal transduction pathways. Annu Rev Genet 41 (2007), 121–145.
Heeb, S., Haas, D., Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14 (2001), 1351–1363.
Sonnleitner, E., Haas, D., Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91 (2011), 63–79.
Willis, D.K., Hrabak, E.M., Rich, J.J., Barta, T.M., Lindow, S.E., Panopoulos, N.J., Isolation and characterization of a Pseudomonas syringae pv. syringae mutant deficient in lesion formation on bean. Mol Plant Microbe Interact 3 (1990), 149–156.
Bender, C.L., Alarcon-Chaidez, F., Gross, D.C., Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63 (1999), 266–292.
Kong, H.S., Roberts, D.P., Kuehne, S.A., Heeb, S., Lakshman, D.K., Lydon, J., Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. Phytopathology 102 (2012), 575–587.
Wang, N., Lu, S.E., Wang, J., Chen, Z.J., Gross, D.C., The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. Mol Plant Microbe Interact 19 (2006), 257–269.
Barta, T.M., Kinscherf, T.G., Willis, D.K., Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J Bacteriol 174 (1992), 3021–3029.
Rich, J.J., Hirano, S.S., Willis, D.K., Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation. Appl Environ Microbiol 58 (1992), 1440–1446.
O'Malley, M.R., Chien, C.F., Peck, S.C., Lin, N.C., Anderson, J.C., A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000. Mol Plant Pathol 21 (2020), 139–144.
Kunkel, B.N., Chen, Z., Virulence strategies of plant pathogenic bacteria. Dworkin, M., Falkow, F., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., (eds.) The prokaryotes, 2006, Springer, New York, USA, 421–440.
Alfano, J.R., Collmer, A., The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179 (1997), 5655–5662.
Lindgren, P.B., Peet, R.C., Panopoulos, N.J., Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J Bacteriol 168 (1986), 512–522.
Xiao, Y., Heu, S., Yi, J., Lu, Y., Hutcheson, S.W., Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv, syringae Pss61 hrp and hrmA genes. J Bacteriol 176 (1994), 1025–1036.
Waite, C., Schumacher, J., Jovanovic, M., Bennett, M., Buck, M., Negative autogenous control of the master type III secretion system regulator HrpL in Pseudomonas syringae. mBio, 8, 2017, e02273 16.
Berge, O., Monteil, C.L., Bartoli, C., Chandeysson, C., Guibaud, C., Sands, D.C., Morris, C.E., A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One, 9, 2014, e105547.
Hojo, H., Koyanagi, M., Tanaka, M., Kajihara, S., Ohnishi, K., Kiba, A., Hikichi, Y., The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce. Microbiology 154 (2008), 2920–2928.
Kajihara, S., Hojo, H., Koyanagi, M., Tanaka, M., Mizumoto, H., Ohnishi, K., Kiba, A., Hikichi, Y., Implication of hrpW in virulence of Pseudomonas cichorii. Plant Pathol 61 (2012), 355–363.
Wali, U.M., Maenaka, R., Mori, Y., Ueno, D., Kai, K., Ohnishi, K., Kiba, A., Hayashi, H., Hikichi, Y., Implication of limited iron acquisition by Pseudomonas cichorii strain SPC9018 in its reduced virulence on eggplant. J Gen Plant Pathol 81 (2015), 136–141.
Wali, U.M., Mori, Y., Maenaka, R., Kai, K., Tanaka, M., Ohnishi, K., Kiba, A., Hikichi, Y., The N-acetyltransferase gene-implicated iron acquisition contributes to host specificity of Pseudomonas cichorii strain SPC9018 and its virulence. Physiol Mol Plant Pathol 92 (2015), 14–21.
Huong, D.D.T., Rajalingam, N., Lee, Y.H., Characterization of virulence function of Pseudomonas cichorii avirulence protein E1 (AvrE1) during host plant infection. Plant Pathol J 37 (2021), 494–501.
Hung, N.B., Ramkumar, G., Lee, Y.H., An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1. Res Microbiol 165 (2014), 620–629.
Cottyn, B., Heylen, K., Heyrman, J., Vanhouteghem, K., Pauwelyn, E., Bleyaert, P., Van Vaerenbergh, J., Hofte, M., De Vos, P., Maes, M., Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Syst Appl Microbiol 32 (2009), 211–225.
Pauwelyn, E., Huang, C.J., Ongena, M., Leclere, V., Jacques, P., Bleyaert, P., Budzikiewicz, H., Schafer, M., Höfte, M., New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol Plant Microbe Interact 26 (2013), 585–598.
Pauwelyn, E., Vanhouteghem, K., Cottyn, B., De Vos, P., Maes, M., Bleyaert, P., Hofte, M., Epidemiology of Pseudomonas cichorii, the case of lettuce midrib rot. J Phytopathol 159 (2011), 298–305.
Huang, C.J., Pauwelyn, E., Ongena, M., Debois, D., Leclere, V., Jacques, P., Bleyaert, P., Höfte, M., Characterization of cichopeptins, new phytotoxic cyclic lipodepsipeptides produced by Pseudomonas cichorii SF1-54 and their role in bacterial midrib rot disease of lettuce. Mol Plant Microbe Interact 28 (2015), 1009–1022.
Girard, L., Höfte, M., De Mot, R., Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions. Crit Rev Microbiol 46 (2020), 397–419.
Mo, Y.Y., Gross, D.C., Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv syringae. J Bacteriol 173 (1991), 5784–5792.
Sambrook, J., Russel, D.W., Molecular cloning: a laboratory manual. 3th ed., 2001, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Shanks, R.M.Q., Caiazza, N.C., Hinsa, S.M., Toutain, C.M., O'Toole, G.A., Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72 (2006), 5027–5036.
Hoang, T.T., Karkhoff-Schwiezer, R.R., Kutchma, A.J., Schweizer, H.P., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212 (1998), 77–86.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Martin Roop, I.I.R., Peterson, K.M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166 (1995), 175–176.
Corbell, N., Loper, J.E., A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177 (1995), 6230–6236.
Wilderman, P.J., Vasil, A.I., Johnson, Z., Wilson, M.J., Cunliffe, H.E., Lamont, I.L., Vasil, M.L., Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69 (2001), 5385–5394.
Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraish, T., Ichinose, Y., The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192 (2010), 117–126.
Ramkumar, G., Lee, S.W., Weon, H.Y., Kim, B.Y., Lee, Y.H., First report on the whole genome sequence of Pseudomonas cichorii strain JBC1 and comparison with other Pseudomonas species. Plant Pathol 64 (2015), 63–70.
Araki, H., Tian, D., Goss, E.M., Jakob, K., Halldrosdottir, S.S., Kreitman, M., Bergelson, J., Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proc Natl Acad Sci USA 103 (2006), 5887–5892.
Shen, H., Keen, N.T., Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J Bacteriol 175 (1993), 5916–5924.
Wang, J., Shao, X., Zhang, Y., Zhu, Y., Yang, P., Yuan, J., Wang, T., Yin, C., Wang, W., Chen, S., Liang, H., Deng, X., HrpS is a global regulator on type III secretion system (T3SS) and non-T3SS genes in Pseudomonas savastanoi pv. phaseolicola. Mol Plant Microbe Interact 31 (2018), 1232–1243.
Ortiz-Martin, I., Thwaites, R., Macho, A.P., Mansfield, J.W., Beuzon, C.R., Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaeolicola. Mol Plant Microbe Interact 23 (2010), 665–681.
Penaloza-Vazquez, A., Preston, G.M., Collmer, A., Bender, C.L., Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology 146 (2000), 2447–2456.
Zhou, L., Höfte, M., Hennessy, R.C., Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology?. Front Bioeng Biotechnol, 12, 2024, 1363183.
de Bruijn, I., Raaijmakers, J.M., Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol 75 (2009), 4753–4761.
Olorunleke, F.E., Kieu, N.P., De Waele, E., Timmerman, M., Ongena, M., Höfte, M., Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. Microbiologyopen, 6, 2017, e00499.
Vaughn, V.L., Gross, D.C., Characterization of salA, syrF, and syrG genes and attedant regulatory networks involved in plant pathogenesis by Pseudomonas syringae pv syringae B728a. PLoS One, 11, 2016, e0150234.
Huynh, T.V., Dahlbeck, D., Staskawicz, B.J., Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245 (1989), 1374–1377.
Stauber, J.L., Loginicheva, E., Schechter, L.M., Carbon source and cell density-dependent regulation of type III secretion system gene expression in Pseudomonas syringae pathovar tomato DC3000. Res Microbiol 163 (2012), 531–539.
Mansfield, J.W., From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol Plant Pathol 10 (2009), 721–734.
Yu, X., Lund, S.P., Scott, R.A., Greenwald, J.W., Records, A.H., Nettleton, D., Lindow, S.E., Gross, D.C., Beattie, G.A., Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA 110 (2013), E425–E434.
Mulet, M., Lalucat, J., Garcia-Valdes, E., DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12 (2010), 1513–1530.
Yamamoto, S., Kasai, H., Arnold, D.L., Jackson, R.W., Vivian, A., Harayama, S., Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146 (2000), 2385–2394.
Cha, J.Y., Lee, D.G., Lee, J.S., Oh, J.I., Baik, H.S., GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528. Biochem Biophys Res Commun 417 (2012), 665–672.
Tang, X., Xiao, Y., Zhou, J.M., Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 19 (2006), 1159–1166.
Marutani, M., Taguchi, F., Ogawa, Y., Hossain, M.M., Inagaki, Y., Toyoda, K., Shiraish, T., Ichinose, Y., Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genom 279 (2008), 313–322.
Nakano, M.M., Marahiel, M.A., Zuber, P., Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic sufractin in Bacillus subtilis. J Bacteriol 173 (1988), 5487–5493.
Coutte, F., Leclère, V., Béchet, M., Guez, J.-S., Lecouturier, D., Chollet-Imbert, M., Dhulster, P., Jacques, P., Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109 (2010), 480–491.
Alfano, J.R., Charkowski, A.O., Deng, W.L., Badel, J.L., Petnicki-Oewieja, T., van Dijk, K., Collmer, A., The Pseudomonas syringae Hrp pathogenicity island has tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 97 (2000), 4856–4861.
Lindeberg, M., Cunnac, S., Collmer, A., Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20 (2012), 199–208.
Wei, C.F., Kvitko, B.H., Shimizu, R., Crabill, E., Alfano, J.R., Lin, N.C., Martin, G.B., Huang, H.C., Collmer, A., A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51 (2007), 32–46.
Jenner, C., Hitchin, E., Mansfield, J.W., Walters, K., Betteridge, P., Teverson, D., Taylor, J., Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol Plant Microbe Interact 4 (1991), 553–562.
Mansfield, J.W., Jenner, C., Hockenhull, R., Bennett, M.A., Stewart, R., Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium. Mol Plant Microbe Interact 7 (1994), 726–739.
Ham, J.H., Majerczak, D.R., Nomura, K., Mecey, C., Uribe, F., He, S.Y., Mackey, D., Coplin, D.L., Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe Interact 22 (2009), 703–712.
DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K., He, S.Y., A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in Arabidopsis. Proc Natl Acad Sci USA 101 (2004), 9927–9932.
Nomura, K., Andreazza, F., Cheng, J., Dong, K., Zhou, P., He, S.Y., Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 621 (2023), 586–591.
Yang, C.H., Gavilanes-Ruiz, M., Okinaka, Y., Vedel, R., Berthyu, I., Boccara, M., Chen, J.W., Perna, N.T., Keen, N.T., Hrp genes of Erwinia chrysanthemi 3937 are important virulence factors. Mol Plant Microbe Interact 15 (2002), 472–480.
Rahme, L.G., Mindrinos, M.N., Panopoulos, N.J., Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 174 (1992), 3499–3507.