Petrogenesis of the Paleoproterozoic Liuying hornblendite arc cumulates and implications for the tectonic evolution of the northern North China Craton - 2025
Continental arc; Hornblendite; Lithospheric mantle modification; North China Craton; Paleoproterozoic; Geology; Geochemistry and Petrology
Abstract :
[en] Understanding the Paleoproterozoic configuration of the northern North China Craton (NCC) is crucial for reconstructing its Precambrian tectonic history. This study integrates geological field observations, petrological data, U-Pb geochronology, and Lu-Hf isotopic analysis of zircons, alongside mineral and whole-rock geochemistry, including Sr-Nd isotopes from the Liuying ultramafic complex in Hebei Province. Our goal is to enhance the understanding of the tectonic history of the craton's northern margin. The complex is composed of hornblendite and plagioclase hornblendite, showing igneous cumulate texture. Zircon U-Pb data from the ultramafic complex define three distinct groups of ages: 2211–2343 Ma, 1761–1999 Ma, and 246–310 Ma, corresponding to magma crystallization and metamorphism resulted from crustal thermal events. The major elements of rocks align with the differentiation trend of hydrous arc magmas. They display characteristics of enrichment in large ion lithophile elements and depletion in high field strength elements. Fractional crystallization of arc magmas with H2O of 7.3–8.1 wt% at middle-lower crust depths (18–23 km) and 966–996 °C formed amphibole-enrichment arc cumulates. The zircon εHf(t) values (–5.96 to + 9.05) are decoupled from enriched Sr-Nd isotopic compositions ((87Sr/86Sr)i = 0.704185–0.705932, εNd(t) = −14.6 to −5.68, (87Sr/86Sr)amp = 0.705110–0.705846), suggesting a subduction-modified mantle source, incorporating 5–10 % subduction slab-derived melts and fluids. The northern part of the NCC was a continental arc above a paleo-subduction zone on a scale similar to the modern Andes at ca. 2.2 Ga. The oceanic slab subduction between the craton and the Siberian segment resulted in partial melting of metasomatized mantle wedge to form Paleoproterozoic hornblendite arc cumulates.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Liu, Wen-Mei; School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China ; Department of Geology, University of Liege, Liege, Belgium
Zheng, Jian-Ping; School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Ma, Qiang; School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Kusky, Timothy; School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Dai, Hong-Kun; School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Language :
English
Title :
Petrogenesis of the Paleoproterozoic Liuying hornblendite arc cumulates and implications for the tectonic evolution of the northern North China Craton
NSCF - National Natural Science Foundation of China
Funding text :
We sincerely thank Dr. J. Zhang (Editor), Dr. C.R. Diwu (Assistant Editor), Dr. Z.W. Wang (Reviewer), and an anonymous reviewer for their insightful comments and suggestions, which greatly improved the clarity of the ideas presented in this study. We also thank Dr. W.B. Ning for his thoughtful discussion on some critical issues, also thank Dr. D. Zhang, Mr. Y.C. Li and L.F. Xue for the technical supports during the LA-ICP-MS U-Pb, in-situ Lu-Hf, and whole-rock major element analyses. This work was supported by the National Key Research and Development Program of China (2023YFF0804404) and the Natural Science Foundation of China (No. 42320104001).
Bizzarro, M., Simonetti, A., Stevenson, R.K., Kurszlaukis, S., In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta 67:2 (2003), 289–302, 10.1016/S0016-7037(02)01048-7.
Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society, Series A, Mathematical: Physical and Engineering Sciences, 376, 2018, 2132, 10.1098/rsta.2017.0405.
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., Marini, J.C., Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat. Geosci. 1 (2008), 64–67, 10.1038/ngeo.2007.51.
Chen, K., Tang, M., Lee, C.-T.-A., Wang, Z., Zou, Z., Hu, Z., Liu, Y., Sulfide-bearing cumulates in deep continental arcs: the missing copper reservoir. Earth Planet. Sci. Lett., 531, 2020, 115971, 10.1016/j.epsl.2019.115971.
Cope, T., Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 458 (2017), 1–10, 10.1016/j.epsl.2017.03.022.
Crisp, L.J., Berry, A.J., Burnham, A.D., Miller, L.A., Newville, M., The Ti-in-zircon thermometer revised: the effect of pressure on the Ti site in zircon. Geochim. Cosmochim. Acta 360 (2023), 241–258, 10.1016/j.gca.2023.04.031.
Daczko, N.R., Piazolo, S., Meek, U., Stuart, C.A., Elliott, V., Hornblendite delineates zones of mass transfer through the lower crust. Sci. Rep. 6 (2016), 1–6, 10.1038/srep31369.
Dai, H.K., Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Xiong, Q., Ping, X.Q., Chen, F.K., Lu, J.G., Pyroxenite Xenoliths Record complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. J. Petrol., 62, 2021, 10.1093/petrology/egaa079.
Du, L., Yang, C., Wyman, D.A., Nutman, A.P., Lu, Z., Song, H., Xie, H., Wan, Y., Zhao, L., Geng, Y., Ren, L., 2090–2070Ma A-type granitoids in Zanhuang complex: further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen. Lithos 254–255 (2016), 18–35, 10.1016/j.lithos.2016.03.007.
Eiler, J.M., Crawford, A., Elliott, T., Farley, K.A., Valley, J.W., Stolper, E.M., Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol. 41 (2000), 229–256, 10.1093/petrology/41.2.229.
Eiler, J.M., Carr, M.J., Reagan, M., Stolper, E., Oxygen isotope constraints on the sources of central American arc lavas. Geochem Geophy Geosy, 6, 2005, Q07007, 10.1029/2004GC000804.
Falloon, T., Danyushevsky, L.V., Crawford, A., Meffre, S., Woodhead, J.D., Bloomer, S.H., Boninites and adakites from the northern termination of the Tonga Trench: implications for adakite petro- genesis. J. Petrol. 49 (2008), 697–715, 10.1093/petrology/egm080.
Faure, M., Trap, P., Lin, W., Monie, P., Bruguier, O., Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan–Hengshan–Wutaishan and Fuping massifs. Episodes 30 (2007), 1–12, 10.18814/epiiugs/2007/v30i2/004.
Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J., The mean composition of ocean ridge basalts. Geochem Geophy Geosy 14 (2013), 489–518, 10.1029/2012GC004334.
Ghiorso, M.S., Sack, R.O., Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contr. Mineral. and Petrol. 119 (1995), 197–212, 10.1007/BF00307281.
Greene, A.R., DeBari, S.M., Kelemen, P.B., Blusztain, J., Clift, P.D., A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47:6 (2006), 1051–1093, 10.1093/petrology/egl002.
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S., Zhou, X.M., Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61 (2002), 237–269, 10.1016/S0024-4937(02)00082-8.
Grimes, C.B., John, B.E., Cheadle, M.J., Frank, K., Mazdab, J.L., Wooden, S.S., Joshua, J.S., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Miner. Petrol. 158 (2009), 757–783, 10.1007/s00410-009-0409-2.
Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Miner. Petrol., 170, 2015, 46, 10.1007/s00410-015-1199-3.
Guo, L., Jagoutz, O., Shinevar, W.J., Zhang, H.-F., Formation and composition of the late cretaceous Gangdese arc lower crust in southern Tibet. Contrib. Miner. Petrol., 175, 2020, 58, 10.1007/s00410-020-01696-y.
Hacker, B.R., Mehl, L., Kelemen, P.B., Rioux, M., Behn, M.D., Luffi, P., Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J. Geophys. Res., 113, 2008, B03204, 10.1029/2007JB005208.
Hanyu, T., Tatsumi, Y., Nakai, S., Chang, Q., Miyazaki, T., Sato, K., Tani, K., Shibata, T., Yoshida, T., Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem. Geophys. Geosyst., 7, 2006, Q08002, 10.1029/2005GC001220.
Hiess, J., Bennett, V.C., Nutman, A.P., Williams, I.S., In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoar-chaean rocks, West Greenland: new insights to making old crust. Geochim. Cosmochim. Acta 73 (2009), 4489–4516, 10.1016/j.gca.2009.04.019.
Hoskin, P.W.O., Schaltegger, U., The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 53:1 (2003), 27–62, 10.2113/0530027.
Itano, K., Takehara, M., Horie, K., Iizuka, T., Nishio, I., Morishita, T., A long-lived mafic magma reservoir: Zircon evidence from a hornblende peridotite in the Hida Belt, Japan. Geology 52 (2024), 3–6, 10.1130/G51560.1.
Jagoutz, O., Muntener, O., Burg, J.P., Ulmer, P., Jagoutz, E., Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas complex in the Kohistan island arc (NW Pakistan). Earth Planet. Sci. Lett. 242:3–4 (2006), 320–342, 10.1016/j.epsl.2005.12.005.
Jagoutz, O., Mütener, O., Schmidt, M.W., Burg, J.P., The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet. Sci. Lett. 303:1–2 (2011), 25–36, 10.1016/j.epsl.2010.12.017.
Kelemen, P.B., Hanghøj, K., Greene, A.R., One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and lower Crust. Treat. Geochem. 3 (2003), 749–806, 10.1016/B0-08-043751-6/03035-8.
Korenaga, J., Initiation and evolution of plate tectonics on Earth: Theories and observations. Annu Rev Earth Pl Sc 41 (2013), 117–151, 10.1146/annurev-earth-050212-124208.
Kusky, T.M., Geophysical and geological tests of tectonic models of the North China Craton. Gondw. Res. 20 (2011), 26–35, 10.1016/j.gr.2011.01.004.
Kusky, T.M., Li, J.H., Paleoproterozoic tectonic evolution of the North China craton. J. Asian Earth Sci. 22:4 (2003), 383–397, 10.1016/S1367-9120(03)00071-3.
Kusky, T.M., Mooney, W.D., Is the Ordos Basin floored by a trapped oceanic plateau?. Earth Planet. Sci. Lett. 429 (2015), 197–204, 10.1016/j.epsl.2015.07.069.
Kusky, T.M., Santosh, M., 2009. The Columbia connection in North China. 323, 49–71. https://doi.org/10.1144/SP323.3.
Kusky, T.M., Wang, L., Growth of continental crust in intra-oceanic and continental-margin arc systems: Analogs for Archean systems. Sci. China Earth Sci. 65 (2022), 1615–1645, 10.1007/s11430-021-9964-1.
Kusky, T.M., Li, J.H., Santosh, M., The Paleoproterozoic North Hebei orogen: North China craton's collisional suture with the Columbia supercontinent. Gondw. Res. 12:1–2 (2007), 4–28, 10.1016/j.gr.2006.11.012.
Kusky, T.M., Windley, B.F., Wang, L., Wang, Z.S., Li, X.Y., Zhu, P.M., Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics 630 (2014), 208–221, 10.1016/j.tecto.2014.05.028.
Kusky, T.M., Polat, A., Polat, A., Windley, B.F., Windley, B.F., Burke, K.C., Dewey, J.F., Kidd, W.S., Maruyama, S., Maruyama, S., Wang, J., Deng, H., Wang, Z., Wang, C., Fu, D., Li, X., Peng, H., Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents. Earth Sci. Rev. 162 (2016), 387–432, 10.1016/j.earscirev.2016.09.002.
Langmuir, C.H., Klein, E.M., Plank, T., Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophysical monograph series 71 (1992), 183–280, 10.1029/GM071p0183.
Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J.O., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M., Schumacher, J.C., Smith, D.C., Stephenson, N.C., Ungaretti, L., Whittaker, E.J., Youzhi, G., Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag. 61 (1997), 295–310, 10.1180/minmag.1997.061.405.13.
Li, X.H., Long, W.G., Li, Q.L., Liu, Y., Zheng, Y.F., Yang, Y.H., Chamberlain, K.R., Wan, D.F., Guo, C.H., Wang, X.C., Tao, H., Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand. Geoanal. Res. 34 (2010), 117–134, 10.1111/j.1751-908X.2010.00036.x.
Liu, S., Li, Q., Liu, C., Lv, Y., Zhang, F., Guandishan granitoids of the Paleoproterozoic Lüliang metamorphic complex in the Trans‐North China Orogen: SHRIMP zircon ages, petrogenesis and tectonic implications. Acta Geol. Sin.-Engl. Ed. 83:3 (2009), 580–602.
Liu, C., Zhao, G., Liu, F., Shi, J., 2.2 Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang complex: evidence for early Paleoproterozoic subduction in the North China Craton. Lithos 208–209 (2014), 104–117, 10.1016/j.lithos.2014.08.025.
Liu, S., Fu, J., Lu, Y.J., Chen, X., Wang, M., Hu, F., Gao, L., Sun, G., Hu, Y., Precambrian Hongqiyingzi complex at the northern margin of the North China Craton: its zircon U-Pb-Hf systematics, geochemistry and constraints on crustal evolution. Precambr. Res. 326 (2019), 58–83, 10.1016/j.precamres.2018.05.019.
Liu, W.M., Zheng, J.P., Charlier, B., Ma, Q., Dai, H.K., Genesis of the Devonian Habaqin ultramafic arc complex and associated low-grade Fe–Ti oxide mineralization in the northern North China Craton. Lithos, 478–479, 2024, 107625, 10.1016/j.lithos.2024.107625.
Ludwig, K.R., Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, 2003.
Ma, X., Chen, B., Chen, J.F., Niu, X.L., Zircon SHRIMP U-Pb age, geochemical, Sr-Nd isotopic, and in-situ Hf isotopic data of the late Carboniferous-Early Permian plutons in the northern margin of the North China Craton. Sci. China Earth Sci. 56 (2013), 126–144, 10.1007/s11430-012-4456-6.
McDonough, W.F., Sun, S.S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253, 10.1016/0009-2541(94)00140-4.
Milan, L.A., Daczko, N.R., Clarke, G.L., Cordillera Zealandia: a Mesozoic arc flare-up on the Paleo-Pacific Gondwana Margin. Sci. Rep., 7, 2017, 261, 10.1038/s41598-017-00347-w.
Mullen, E.K., Weis, D., Marsh, N.B., Martindale, M., Primitive arc magma diversity: New geochemical insights in the Cascade Arc. Chem. Geol. 448 (2017), 43–70, 10.1016/j.chemgeo.2016.11.006.
Müntener, O., Ulmer, P., Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318 (2018), 64–89, 10.2475/01.2018.04.
Müntener, O., Kelemen, P., Grove, T., The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Miner. Petrol. 141 (2001), 643–658, 10.1007/s004100100266.
Paterson, S.R., Ducea, M.N., Arc magmatic tempos: Gathering the evidence. Elements 11 (2015), 91–98, 10.2113/gselements.11.2.91.
Peng, P., Guo, J., Zhai, M., Windley, B.F., Li, T., Liu, F., Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos 148 (2012), 27–44, 10.1016/j.lithos.2012.05.021.
Peng, P., Wang, X.P., Windley, B.F., Guo, J.H., Zhai, M.G., Li, Y., Spatial distribution of ∼1950–1800 Ma metamorphic events in the North China craton: Implications for tectonic subdivision of the craton. Lithos 202–203 (2014), 250–266, 10.1016/j.lithos.2014.05.033.
Plank, T., The Chemical Composition of Subducting Sediments. Treatise on Geochemistry, 2014, Elsevier, 607–629, 10.1016/B978-0-08-095975-7.00319-3.
Ridolfi, F., Renzulli, A., Puerini, M., Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Miner. Petrol. 160:1 (2010), 45–66, 10.1007/s00410-009-0465-7.
Rioux, M., Hacker, B., Mattinson, J., Kelemen, P., Blusztajn, J., Gehrels, G., The magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Geol. Soc. Am. Bull. 119:9–10 (2007), 1168–1184, 10.1130/B25964.1.
Rioux, M., Mattinson, J., Hacker, B., Kelemen, P., Blusztajn, J., Hanghøj, K., Gehrels, G., Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: an analogue for low–velocity middle crust in modern arcs. Tectonics, 29(3), 2010, TC3001, 10.1029/2009TC002541.
Rosenbaum, G., Caulfield, J.T., Ubide, T., Ward, J.F., Sandiford, D., Sandiford, M., Spatially and geochemically anomalous arc magmatism: Insights from the andean arc. Geochem. Geophys. Geosyst., 22, 2021, e2021GC009688, 10.1029/2021GC009688.
Salters, V.J.M., Stracke, A., Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, 2004, 10.1029/2003GC000597.
Santosh, M., Tsunogae, T., Li, J., Liu, S., Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondw. Res. 11 (2007), 263–285, 10.1016/j.gr.2006.10.009.
Santosh, M., Wilde, S.A., Li, J.H., Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: evidence from SHRIMP U–Pb zircon geochronology. Precambr. Res. 159:3–4 (2007), 178–196, 10.1016/j.precamres.2007.06.006.
Smith, D.J., Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun., 5, 2014, 4329, 10.1038/ncomms5329.
Song, B., Nutman, A.P., Liu, D.Y., Wu, J.S., 3800 to 2500 crustal evolution in the Anshan area of Liaoning Province, northeastern North China. Precambr. Res. 78 (1996), 79–94, 10.1016/0301-9268(95)00070-4.
Sun, D., Li, Q., Liu, S., Chen, X., Wang, Z., Chen, Y., Cao, S., Wang, X., Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: New perspectives from zircon U–Pb ages and Hf isotopic data. Precambr. Res., 331, 2019, 105368, 10.1016/j.precamres.2019.105368.
Sun, G.Z., Liu, S.W., Cawood, P., Tang, M., van Hunen, J., Gao, L., Hu, Y.L., Hu, F.Y., Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nat. Commun, 12, 2021, 3888, 10.1038/s41467-021-24139-z.
Teng, X.M., Yang, Q.Y., Santosh, M., Devonian magmatism associated with arc-continent collision in the northern North China Craton: evidence from the Longwangmiao ultramafic intrusion in the Damiao area. J. Asian Earth Sci. 113 (2015), 626–643, 10.1016/j.jseaes.2015.04.032.
Tollstrup, D.L., Gill, J.B., Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases. Geology 33 (2005), 737–740, 10.1130/G21639.1.
Trap, P., Faure, M., Lin, W., Le Breton, N., Monie, P., Paleoproterozoic tectonic evolution of the Trans-North China orogen: Toward a comprehensive model. Precambr. Res. 222–223 (2012), 191–211, 10.1016/j.precamres.2011.09.008.
Triantafyllou, A., Berger, J., Baele, J.M., Bruguier, O., Diot, H., Ennih, N., Monnier, C., Plissart, G., Vandycke, S., Watlet, A., Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambr. Res. 304 (2018), 39–63, 10.1016/j.precamres.2017.10.022.
Wan, B., Windley, B.F., Xiao, W., Feng, J., Zhang, J., Paleoproterozoic high-pressure metamorphism in the northern North China craton and implications for the Nuna supercontinent. Nat. Commun., 6(1), 2015, 8344, 10.1038/ncomms9344.
Wan, B., Yang, X., Tian, X., Yuan, H., Kirscher, U., Mitchell, R.N., Seismological evidence for the earliest global subduction network at 2 Ga ago. Sci. Adv. 6 (2020), 1–9, 10.1126/sciadv.abc5491.
Wang, J., Kusky, T., Polat, A., Wang, L., Deng, H., Wang, S., A late Archean tectonic mélange in the Central orogenic belt, North China craton. Tectonophysics 608 (2013), 929–946, 10.1016/j.tecto.2013.07.025.
Wang, H., Wu, Y.B., Li, C.R., Zhao, T.Y., Qin, Z.W., Zhu, L.Q., Gao, S., Zheng, J.P., Liu, X.M., Zhou, L., Zhang, Y., Yang, S.H., Recycling of sediment into the mantle source of K-rich mafic rocks: Sr–Nd–Hf–O isotopic evidence from the Fushui complex in the Qinling Orogen. Contrib. Miner. Petrol., 168, 2014, 1062, 10.1007/s00410-014-1062-y.
Wang, J.P., Kusky, T., Wang, L., Polat, A., Deng, H., Wang, C., Wang, C., Wang, S.J., Structural relationships along a Neoarchean arc-continent collision zone, North China craton. GSA Bull. 129:1–2 (2017), 59–75, 10.1130/B31479.1.
Wang, J.P., Li, X.W., Ning, W.B., Kusky, T., Wang, L., Polat, A., Deng, H., Geology of a Neoarchean suture: evidence from the Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton. GSA Bull. 131 (2019), 1943–1964, 10.1130/B35138.1.
Wang, J., Yang, C., Wyman, D.A., Song, H., Du, L., Petrogenesis and tectonic implications of the 2.1–2.0 Ga granitoids in Fuping complex, North China Craton: Constraints from petrology, geochemistry and zircon U-Pb-Hf isotopes. Precambr. Res., 386–387, 2020, 106007, 10.1016/j.lithos.2021.106007.
Wei, C.J., Zhai, M.G., Wang, B., Four phases of Orosirian metamorphism in the north North China Craton (NNCC): Insights into the regional tectonic framework and evolution. Earth Sci. Rev., 241, 2023, 10.1016/j.earscirev.2023.104449.
Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28 (2004), 9–39, 10.1111/j.1751-908X.2004.tb01041.x.
Wilde, S.A., Zhao, G.C., Sun, M., Development of the North China Craton during the late Archean and its final amalgamation at 1.8 Ga: some speculation on its position within a global Paleoproterozoic supercontinent. Gondw. Res. 5 (2002), 85–94, 10.1016/S1342-937X(05)70892-3.
Wu, C., Zhou, Z.G., Zuza, A.V., Wang, G.S., Liu, C.F., Jiang, T., A 1.9 Ga mélange along the northern margin of the North China craton: Implications for the assembly of Columbia supercontinent. Tectonics 37 (2018), 3610–3646, 10.1029/2018TC005103.
Wu, C., Wang, G., Zhou, Z., Haproff, P.J., Zuza, A.V., Liu, W., Paleoproterozoic Plate Tectonics Recorded in the Northern Margin Orogen, North China Craton. Geochem. Geophys. Geosyst., 23, 2022, 11, 10.1029/2022GC010662.
Wu, C., Wang, G., Zhou, Z., Zhao, X., Haproff, P.J., Late Archean–Paleoproterozoic plate tectonics along the northern margin of the North China craton. GSA Bull. 135:3–4 (2023), 967–989, 10.1130/B36533.1.
Xiao, W.J., Windley, B.F., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Yuan, C., Sun, M., Chen, H.L., A tale of amalgamation of three Permo-Triassic college Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annu Rev Earth Pl Sc 43 (2015), 477–507, 10.1146/annurev-earth-060614-105254.
Xiao, D., Ning, W., Wang, J., Kusky, T., Wang, L., Deng, H., Zhong, Y., Jiang, K., Neoarchean to Paleoproterozoic tectonothermal evolution of the North China Craton: constraints from geological mapping and Th-U-Pb geochronology of zircon, titanite and monazite in Zanhuang Massif. Precambr. Res., 359, 2021, 106214, 10.1016/j.precamres.2021.106214.
Xu, C., Kynický, J., Tao, R., Liu, X., Zhang, L., Pohanka, M., Song, W., Fei, Y., Recovery of an oxidized majorite inclusion from Earth's deep asthenosphere. Sci. Adv. 3 (2017), 1–6, 10.1126/sciadv.1601589.
Xu, C., Kynický, J., Song, W., Tao, R., Lü, Z., Li, Y., Yang, Y., Pohanka, M., Galiova, M.V., Zhang, L., Fei, Y., Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat. Commun. 9 (2018), 1–8, 10.1038/s41467-018-05140-5.
Xu, C., Chakhmouradian, A.R., Kynický, J., Li, Y., Song, W., Chen, W., A Paleoproterozoic mantle source modified by subducted sediments under the North China craton. Geochim. Cosmochim. Acta 245 (2019), 222–239, 10.1016/j.gca.2018.10.032.
Yang, J.H., Sun, J.F., Zhang, J.H., Wilde, S.A., Petrogenesis of late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U–Pb age and Hf–O isotope evidence. Lithos 153 (2012), 108–128, 10.1016/j.lithos.2012.06.023.
Yin, A., Brandl, G., Kröner, A., Plate-tectonic processes at ca. 2.0 Ga: Evidence from >600 km of plate convergence. Geology 48:2 (2020), 103–107, 10.1130/G47070.1.
Zhai, M.G., Zhao, L., Zhu, X., Zhou, Y., Peng, P., Guo, J., Li, X., Late Neoarchean magmatic-metamorphic event and crustal stabilization in the North China Craton. Am J Sci 321:1–2 (2021), 206–234, 10.2475/01.2021.06.
Zhang, S.H., Liu, S.W., Zhao, Y., Yang, J.H., Song, B., Liu, X.M., The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambr. Res. 155:3–4 (2007), 287–312, 10.1016/j.precamres.2007.02.008.
Zhang, S.H., Zhao, Y., Liu, X.C., Liu, D.Y., Chen, F., Xie, L.W., Chen, H.H., Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos 110 (2009), 229–246, 10.1016/j.lithos.2009.01.008.
Zhang, H.F., Ying, J.F., Tang, Y.J., Li, X.H., Feng, C., Santosh, M., Phanerozoic reactivation of the Archean North China Craton through episodic magmatism: Evidence from zircon U–Pb geochronology and Hf isotopes from the Liaodong Peninsula. Gondwana Res. 19 (2011), 446–459, 10.1016/j.gr.2010.09.002.
Zhang, S.H., Li, Z.X., Evans, D.A.D., Wu, H.C., Li, H., Dong, J., Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 353 (2012), 145–155, 10.1016/j.epsl.2012.07.034.
Zhang, S.H., Zhao, Y., Santosh, M., Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambr. Res. 222–223 (2012), 339–367, 10.1016/j.precamres.2011.06.003.
Zhang, Z.J., Kusky, T., Gao, M., Cheng, Q.M., Spatio-temporal analysis of detrital zircon U-Pb geochronology and Hf isotope data: tests of tectonic models for the Precambrian evolution of the North China Craton. Earth Sci. Rev., 239, 2023, 104372, 10.1016/j.earscirev.2023.104372.
Zhao, G.C., Zhai, M.G., Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondw. Res. 23 (2013), 1207–1240, 10.1016/j.gr.2012.08.016.
Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambr. Res. 107:1 (2001), 45–73, 10.1016/S0301-9268(00)00154-6.
Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., Review of the global 2.1–1.8 Ga orogens: Implications for a pre-Rodinian supercontinent. Earth Sci. Rev. 59:1–4 (2002), 125–162, 10.1016/s0012-8252(02)00073-9.
Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., Late Archean to Paleoproterozoic evolution of the North China craton: Key issues revisited. Precambr. Res. 136:2 (2005), 177–202, 10.1016/j.precamres.2004.10.002.
Zhao, G.C., Shuwen, L., Sun, M., Sanzhong, L., Wilde, S., Xia, X., Zhang, J., He, Y., What happened in the Trans‐North China Orogen in the period 2560‐1850 Ma?. Acta Geologica Sinica-English Edition 80:6 (2006), 790–806, 10.1111/j.1755-6724.2006.tb00303.x.
Zhao, R., Guo, J., Peng, P., Liu, F., 2.1 Ga crustal remelting event in Hengshan complex: evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites. Acta Petrol. Sin. 27:6 (2011), 1607–1623 (in Chinese with English abstract).
Zhao, G.C., Cawood, P.A., Li, S., Wilde, S.A., Sun, M., Zhang, J., He, Y., Yin, C., Amalgamation of the North China craton: Key issues and discussion. Precambr. Res. 222–223 (2012), 55–76, 10.1016/j.precamres.2012.09.016.
Zhao, J.H., Zhou, M.F., Wu, Y.B., Zheng, J.P., Wang, W., Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton. Contrib. Miner. Petrol., 174, 2019, 4, 10.1007/s00410-019-1573-7.
Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Lu, F., Wang, C., Zhang, M., Wang, F., Li, H., 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology 32:3 (2004), 229–232, 10.1130/G20133.1.
Zhong, Y., Kusky, T., Wang, L., Polat, A., Liu, X.Y., Peng, Y.Y., Luan, Z.K., Wang, C.H., Wang, J.P., Deng, H., Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nat. Commun, 12, 2021, 6172, 10.1038/s41467-021-26474-7.
Zhou, J.S., Yang, Z.S., Hou, Z.Q., Wang, Q., Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution. Am. Mineral. 105 (2020), 262–275, 10.2138/am-2020-7199.
Zhu, T.C., Wang, Z.W., Wang, Z.H., Sun, Y.X., Liu, Z.Y., Xu, Y., Yu, J.W., Wei, H., Geng, X.J., Formation of late Paleoproterozoic Gaositai Hornblendite in Northern North China Craton: evidence from Zircon U-Pb Isotopes and Amphibole Trace elements. Minerals, 12(8), 2022, 1046, 10.3390/min12081046.
Zhu, R.Z., Smith, D.J., Wang, F., Qin, J.F., Zhang, C., Zhao, S., Liu, M., Zhang, F., Zhu, Y., Lai, S.C., Hornblendites as a record of differentiation, metasomatism and magma fertility in arc crust. Chem. Geol., 650, 2024, 121974, 10.1016/j.chemgeo.2024.121974.
Zindler, A., Hart, S.R., Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14 (1986), 493–571, 10.1146/annurev.ea.14.050186.002425.