[en] A disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS2) is a member of the ADAMTS zinc metalloproteinase family, best known for its role as a procollagen I N-proteinase in the maturation of fibrillar collagens. Biallelic defects in the ADAMTS2 gene, resulting in a loss of ADAMTS2 enzyme activity and consequent retention of N-propeptides in type I procollagen molecules, lead to the rare monogenic disease Ehlers-Danlos syndrome dermatosparaxis type (dEDS) in humans, and dermatosparaxis in animals, conditions that are hallmarked by extreme fragility of the skin and other soft connective tissues. Recent studies have expanded the substrate repertoire of ADAMTS2 considerably, revealing its potential implication in several biological processes, including angiogenesis, lymphangiogenesis, neurodevelopment, immunity, and spermatogenesis. There is also emerging evidence for a role for ADAMTS2 in complex disorders, including cancer and cardiovascular and neurodegenerative disease. These findings may not only provide answers to hitherto unsolved questions in dermatosparaxis but also unveil a therapeutic and/or biomarker potential of ADAMTS2 in many diseases. This narrative review provides an in-depth overview of the discovery, structure, regulation, and enzymatic role of ADAMTS2, its role in fibrillar collagen maturation and in dEDS pathogenesis, as well as its newly discovered substrates and its potential role in complex disorders.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vanlerberghe, Ruben ; Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
Colige, Alain ; Université de Liège - ULiège > GIGA > GIGA Cancer - Connective Tissue Biology
Malfait, Anne-Marie ; Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, and Chicago Center on Musculoskeletal Pain, Chicago, IL 60612, United States
Syx, Delfien; Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
Malfait, Fransiska ; Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
UGent - Ghent University NIAMS - National Institute of Arthritis and Musculoskeletal and Skin Diseases FWO - Research Foundation Flanders Rheumatology Research Foundation NIH - National Institutes of Health EDS - Ehlers-Danlos Society F.R.S.-FNRS - Fund for Scientific Research ULiège - University of Liège
Funding text :
This work was supported by the Research Foundation Flanders (FWO), Belgium (No. 1842318N, 3G041519 to F.M.; 12Q5920N to D.S.); Ghent University (No. GOA019-21); The Ehlers-Danlos Society (to D.S. and F.M.); the National Institutes of Health [National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)] (USA) (No. R01AR060364, R01AR064251, P30AR079206 to A.M.M.; 1R21AR085242-01 to A.M.M., D.S., and F.M.). A.M.M. is supported by the Klaus E. Kuettner, PhD, Chair of Osteoarthritis Research. A.C. is a \u201CSenior Research Associate\u201D of the Fonds de la Recherche Scientifique - Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium), and his work is supported by grants from the FRS-FNRS (No. FC96394, J.0034.24), the Fonds Sp\u00E9ciaux de la Recherche (Universit\u00E9 de Li\u00E8ge), and the Fondation Hospitalo-Universitaire L\u00E9on Fr\u00E9d\u00E9ricq (Universit\u00E9 of Li\u00E8ge, Belgium).
Shoulders, M.D., Raines, R.T., Collagen structure and stability. Annu Rev Biochem 78 (2009), 929–958.
Hynes, R.O., Naba, A., Overview of the matrisome: an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspect Biol, 4(1), 2012, a004903.
Ruggiero, F., The Collagen Superfamily and Collagenopathies. 2021, Springer International Publishing, Cham.
Kadler, K.E., Baldock, C., Bella, J., Boot-Handford, R.P., Collagens at a glance. J Cell Sci 120:pt 12 (2007), 1955–1958.
Canty, E.G., Kadler, K.E., Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol Part A Mol Integr Physiol 133:4 (2002), 979–985.
Birk, D.E., Brückner, P., Collagens, Suprastructures, and Collagen Fibril Assembly. the Extracellular Matrix: An Overview. 2010, Springer Berlin Heidelberg, Berlin, Heidelberg, 77–115.
Hanset, R., Ansay, M., Dermatosparaxie (peau déchirée) chez le veau: Un défaut général du tissu conjonctif, de nature héréditaire. Ann Med Vet 7 (1967), 451–470.
Fjolstad, M., Helle, O., A hereditary dysplasia of collagen tissues in sheep. J Pathol 112:3 (1974), 183–188.
Holbrook, K.A., Byers, P.H., Structural abnormalities in the dermal collagen and elastic matrix from the skin of patients with inherited connective tissue disorders. J Invest Dermatol 79:Suppl 1 (1982), 7s–16s.
Holbrook, K.A., Byers, P.H., Counts, D.F., Hegreberg, G.A., Dermatosparaxis in a Himalayan cat: II. Ultrastructural studies of dermal collagen. J Invest Dermatol 74:2 (1980), 100–104.
Counts, D.F., Byers, P.H., Holbrook, K.A., Hegreberg, G.A., Dermatosparaxis in a Himalayan cat: I. Biochemical studies of dermal collagen. J Invest Dermatol 74:2 (1980), 96–99.
Lenaers, A., Ansay, M., Nusgens, B.V., Lapière, C.M., Collagen made of extended-chains, procollagen, in genetically-defective dermatosparaxic calves. Eur J Biochem 23:3 (1971), 533–543.
Lapière, C.M., Lenaers, A., Kohn, L.D., Procollagen peptidase: an enzyme excising the coordination peptides of procollagen. Proc Natl Acad Sci USA 68:12 (1971), 3054–3058.
Hulmes, D.J., Kadler, K.E., Mould, A.P., et al. Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide. J Mol Biol 210:2 (1989), 337–345.
Holmes, D.F., Watson, R.B., Steinmann, B., Kadler, K.E., Ehlers-Danlos syndrome type VIIB. Morphology of type I collagen fibrils formed in vivo and in vitro is determined by the conformation of the retained N-propeptide. J Biol Chem 268:21 (1993), 15758–15765.
Watson, R.B., Holmes, D.F., Graham, H.K., Nusgens, B.V., Kadler, K.E., Surface located procollagen N-propeptides on dermatosparactic collagen fibrils are not cleaved by procollagen N-proteinase and do not inhibit binding of decorin to the fibril surface. J Mol Biol 278:1 (1998), 195–204.
Schmitt, F.O., Contributions of molecular biology to medicine. Bull N Y Acad Med 36 (1960), 725–749.
Colige, A., Beschin, A., Samyn, B., et al. Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J Biol Chem 270:28 (1995), 16724–16730.
Colige, A., Sieron, A.L., Li, S.W., et al. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 65:2 (1999), 308–317.
Colige, A., Ruggiero, F., Vandenberghe, I., et al. Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J Biol Chem 280:41 (2005), 34397–34408.
Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F., Matsushima, K., Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272:1 (1997), 556–562.
Bekhouche, M., Colige, A., The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol 44–46 (2015), 46–53.
Colige, A., Li, S.W., Sieron, A.L., Nusgens, B.V., Prockop, D.J., Lapière, C.M., cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci U S A 94:6 (1997), 2374–2379.
Fernandes, R.J., Hirohata, S., Engle, J.M., et al. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 276:34 (2001), 31502–31509.
Nagase, T., Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res 4:2 (1997), 141–150.
Le Goff, C., Apte, S.S., Adamts3 and ADAMTS14. the ADAM Family of Proteases. 2005, Springer US, Boston, MA, 283–298.
Bolz, H., Ramírez, A., von Brederlow, B., Kubisch, C., Characterization of ADAMTS14, a novel member of the ADAMTS metalloproteinase family. Biochim Biophys Acta 1522:3 (2001), 221–225.
Cal, S., Obaya, A.J., Llamazares, M., Garabaya, C., Quesada, V., López-Otín, C., Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:1–2 (2002), 49–62.
Wang, L.W., Dlugosz, M., Somerville, R.P., Raed, M., Haltiwanger, R.S., Apte, S.S., O-fucosylation of thrombospondin type 1 repeats in ADAMTS-like-1/punctin-1 regulates secretion: implications for the ADAMTS superfamily. J Biol Chem 282:23 (2007), 17024–17031.
Wang, L.W., Leonhard-Melief, C., Haltiwanger, R.S., Apte, S.S., Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan. J Biol Chem 284:44 (2009), 30004–30015.
Ricketts, L.M., Dlugosz, M., Luther, K.B., Haltiwanger, R.S., Majerus, E.M., O-fucosylation is required for ADAMTS13 secretion. J Biol Chem 282:23 (2007), 17014–17023.
Hofsteenge, J., Huwiler, K.G., Macek, B., et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 276:9 (2001), 6485–6498.
Fagerberg, L., Hallström, B.M., Oksvold, P., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:2 (2014), 397–406.
Duff, M.O., Olson, S., Wei, X., et al. Genome-wide identification of zero nucleotide recursive splicing in Drosophila. Nature 521:7552 (2015), 376–379.
Le Goff, C., Somerville, R.P., Kesteloot, F., et al. Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133:8 (2006), 1587–1596.
Kaneko, N., Hirai, K., Oshima, M., et al. ADAMTS2 regulates radial neuronal migration by activating TGF-β signaling at the subplate layer of the developing neocortex. EMBO Rep 25 (2024), 3090–3115.
Altuntaş, C., Alper, M., Keleş, Y., Sav, F.N., Köçkar, F., Hypoxic regulation of ADAMTS-2 and-3 (a disintegrin and matrix metalloproteinase with thrombospondin motifs 2 and 3) procollagen N proteinases by HIF-1α in endothelial cells. Mol Cell Biochem 478:5 (2023), 1151–1160.
Hofer, T.P.J., Frankenberger, M., Mages, J., et al. Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids. J Mol Med 86:3 (2008), 323–332.
Wang, X., Chen, W., Zhang, J., et al. Critical role of ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2) in cardiac hypertrophy induced by pressure overload. Hypertension 69:6 (2017), 1060–1069.
Alper, M., Kockar, F., IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway. Mol Cell Biochem 393:1–2 (2014), 165–175.
Wang, W.M., Lee, S., Steiglitz, B.M., et al. Transforming growth factor-β induces secretion of activated ADAMTS-2 A procollagen III N-proteinase. J Biol Chem 278:21 (2003), 19549–19557.
Alper, M., Aydemir, A.T., Köçkar, F., Induction of human ADAMTS-2 gene expression by IL-1α is mediated by a multiple crosstalk of MEK/JNK and PI3K pathways in osteoblast like cells. Gene 573:2 (2015), 321–327.
Huang, K., Wu, H., Xu, X., Wu, L., Li, Q., Han, L., Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging (Albany NY) 15:14 (2023), 7187–7218.
Leduc, C., Dupont, L., Joannes, L., et al. In vivo N-terminomics highlights novel functions of ADAMTS2 and ADAMTS14 in skin collagen matrix building. Front Mol Biosci, 8, 2021, 643178.
Nusgens, B.V., Verellen-Dumoulin, C., Hermanns-Lê, T., et al. Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis. Nat Genet 1:3 (1992), 214–217.
Smith, L.T., Wertelecki, W., Milstone, L.M., et al. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet 51:2 (1992), 235–244.
Malfait, F., Francomano, C., Byers, P., et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 175:1 (2017), 8–26.
Beighton, P., De Paepe, A., Steinmann, B., Tsipouras, P., Wenstrup, R.J., Ehlers-danlos syndromes: revised nosology, Villefranche, 1997. Am J Med Genet 77:1 (1998), 31–37.
Malfait, F., De Coster, P., Hausser, I., et al. The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am J Med Genet A 131:1 (2004), 18–28.
Bar-Yosef, O., Polak-Charcon, S., Hoffman, C., Feldman, Z.P., Frydman, M., Kuint, J., Multiple congenital skull fractures as a presentation of Ehlers-Danlos syndrome type VIIC. Am J Med Genet A 146A:23 (2008), 3054–3057.
Solomons, J., Coucke, P., Symoens, S., et al. Dermatosparaxis (Ehlers-Danlos type VIIC): prenatal diagnosis following a previous pregnancy with unexpected skull fractures at delivery. Am J Med Genet A 161A:5 (2013), 1122–1125.
Van Damme, T., Colige, A., Syx, D., et al. Expanding the clinical and mutational spectrum of the Ehlers-Danlos syndrome, dermatosparaxis type. Genet Med 18:9 (2016), 882–891.
Angwin, C., Byers, P., Dulfer, E., et al. The natural history of dermatosparaxis Ehlers Danlos syndrome: an adult case series. Am J Med Genet A, 197(4), 2025, e63957.
Li, S.W., Arita, M., Fertala, A., et al. Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem J 355:pt 2 (2001), 271–278.
Yamakage, Y., Kato, M., Hongo, A., et al. A disintegrin and metalloproteinase with thrombospondin motifs 2 cleaves and inactivates Reelin in the postnatal cerebral cortex and hippocampus, but not in the cerebellum. Mol Cell Neurosci, 100, 2019, 103401.
Byers, P.H., Duvic, M., Atkinson, M., et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 72:1 (1997), 94–105.
Lichtenstein, J.R., Martin, G.R., Kohn, L.D., Byers, P.H., McKusick, V.A., Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome. Science. 182:4109 (1973), 298–300.
Steinmann, B., Tuderman, L., Peltonen, L., Martin, G.R., McKusick, V.A., Prockop, D.J., Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem 255:18 (1980), 8887–8893.
Martín-Martín, M., Cortés-Martín, J., Tovar-Gálvez, M.I., Sánchez-García, J.C., Díaz-Rodríguez, L., Rodríguez-Blanque, R., Ehlers–Danlos syndrome type arthrochalasia: a systematic review. Int J Environ Res Publ Health, 19(3), 2022, 1870.
Bekhouche, M., Leduc, C., Dupont, L., et al. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets. FASEB J 30:5 (2016), 1741–1756.
Young, B.B., Zhang, G., Koch, M., Birk, D.E., The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea. J Cell Biochem 87:2 (2002), 208–220.
Agarwal, P., Zwolanek, D., Keene, D.R., et al. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure. J Biol Chem 287:27 (2012), 22549–22559.
Rosell-García, T., Paradela, A., Bravo, G., et al. Differential cleavage of lysyl oxidase by the metalloproteinases BMP1 and ADAMTS2/14 regulates collagen binding through a tyrosine sulfate domain. J Biol Chem 294:29 (2019), 11087–11100.
Deng, Z., Fan, T., Xiao, C., et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Targeted Ther, 9(1), 2024, 61.
Sottile, J., Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 1654:1 (2004), 13–22.
Bix, G., Iozzo, R.V., Matrix revolutions: “Tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:1 (2005), 52–60.
Dubail, J., Kesteloot, F., Deroanne, C., et al. ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci 67:24 (2010), 4213–4232.
Alitalo, K., The lymphatic vasculature in disease. Nat Med 17:11 (2011), 1371–1380.
Brouillard, P., Boon, L., Vikkula, M., Genetics of lymphatic anomalies. J Clin Investig 124:3 (2014), 898–904.
Jeltsch, M., Jha, S.K., Tvorogov, D., et al. CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129:19 (2014), 1962–1971.
Janssen, L., Dupont, L., Bekhouche, M., et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis 19:1 (2016), 53–65.
Dupont, L., Joannes, L., Morfoisse, F., et al. ADAMTS2 and ADAMTS14 can substitute for ADAMTS3 in adults for pro-VEGFC activation and lymphatic homeostasis. JCI Insight, 7(8), 2022, e151509.
Wasser, C.R., Herz, J., Reelin: neurodevelopmental architect and homeostatic regulator of excitatory synapses. J Biol Chem 292:4 (2017), 1330–1338.
Khialeeva, E., Carpenter, E.M., Nonneuronal roles for the reelin signaling pathway. Dev Dyn 246:4 (2017), 217–226.
Ogino, H., Hisanaga, A., Kohno, T., et al. Secreted metalloproteinase ADAMTS-3 inactivates reelin. J Neurosci 37:12 (2017), 3181–3191.
Kohno, S., Kohno, T., Nakano, Y., et al. Mechanism and significance of specific proteolytic cleavage of Reelin. Biochem Biophys Res Commun 380:1 (2009), 93–97.
Koie, M., Okumura, K., Hisanaga, A., et al. Cleavage within Reelin repeat 3 regulates the duration and range of the signaling activity of Reelin protein. J Biol Chem 289:18 (2014), 12922–12930.
Hong, S.E., Shugart, Y.Y., Huang, D.T., et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:1 (2000), 93–96.
Lane-Donovan, C., Philips, G.T., Wasser, C.R., et al. Reelin protects against amyloid β toxicity in vivo. Sci Signal, 8(384), 2015, ra67.
Guidotti, A., Grayson, D.R., Caruncho, H.J., Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders. Front Cell Neurosci, 10, 2016, 89.
Ishii, K., Kubo, K.I., Nakajima, K., Reelin and neuropsychiatric disorders. Front Cell Neurosci, 10, 2016, 229.
Folsom, T.D., Fatemi, S.H., The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 68 (2013), 122–135.
Dal Pozzo, V., Crowell, B., Briski, N., Crockett, D.P., D'Arcangelo, G., Reduced reelin expression in the hippocampus after traumatic brain injury. Biomolecules, 10(7), 2020, E975.
Jonat, C., Rahmsdorf, H.J., Park, K.K., et al. Antitumor promotion and antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:6 (1990), 1189–1204.
Aljada, A., Increased I B expression and diminished nuclear NF- B in human mononuclear cells following hydrocortisone injection. J Clin Endocrinol Metab 84:9 (1999), 3386–3389.
Saadat, F., Khorramizadeh, M.R., Mirshafiey, A., Apoptotic efficacy and inhibitory effect of dexamethasone on matrix metalloproteinase. Med Sci Monit 11:7 (2005), BR253–BR257.
Dupont, L., Ehx, G., Chantry, M., et al. Spontaneous atopic dermatitis due to immune dysregulation in mice lacking Adamts2 and 14. Matrix Biol 70 (2018), 140–157.
Kano, J., Wang, H., Zhang, H., Noguchi, M., Roles of DKK3 in cellular adhesion, motility, and invasion through extracellular interaction with TGFBI. FEBS J 289:20 (2022), 6385–6399.
Das, D.S., Wadhwa, N., Kunj, N., Sarda, K., Pradhan, B.S., Majumdar, S.S., Dickkopf homolog 3 (DKK3) plays a crucial role upstream of WNT/β-CATENIN signaling for Sertoli cell mediated regulation of spermatogenesis. PLoS One, 8(5), 2013, e63603.
Roemer, A., Schwettmann, L., Jung, M., et al. The membrane proteases ADAMs and hepsin are differentially expressed in renal cell carcinoma. Are they potential tumor markers?. J Urol 172:6 pt 1 (2004), 2162–2166.
Zhao, Y., Song, X., Song, X., Xie, L., Identification of diagnostic exosomal lncRNA-miRNA-mRNA biomarkers in colorectal cancer based on the CeRNA network. Pathol Oncol Res, 28, 2022, 1610493.
Kordowski, F., Kolarova, J., Schafmayer, C., et al. Aberrant DNA methylation of ADAMTS16 in colorectal and other epithelial cancers. BMC Cancer, 18(1), 2018, 796.
Kirana, C., Peng, L., Miller, R., et al. Combination of laser microdissection, 2D-DIGE and MALDI-TOF MS to identify protein biomarkers to predict colorectal cancer spread. Clin Proteomics, 16, 2019, 3.
Tota, G., Coccaro, N., Zagaria, A., et al. ADAMTS2 gene dysregulation in T/myeloid mixed phenotype acute leukemia. BMC Cancer, 14, 2014, 963.
Sun, C., Chen, Y., Kim, N.H., et al. Identification and verification of potential biomarkers in gastric cancer by integrated bioinformatic analysis. Front Genet, 13, 2022, 911740.
Liang, L., Zhu, J.H., Chen, G., Qin, X.G., Chen, J.Q., Prognostic values for the mRNA expression of the ADAMTS family of genes in gastric cancer. J Oncol, 2020, 2020, 9431560.
Jiang, C., Zhou, Y., Huang, Y., Wang, Y., Wang, W., Kuai, X., Overexpression of ADAMTS-2 in tumor cells and stroma is predictive of poor clinical prognosis in gastric cancer. Hum Pathol 84 (2019), 44–51.
Khoshdel, F., Mottaghi-Dastjerdi, N., Yazdani, F., et al. CTGF FN1 IL-6, THBS1 and WISP1 genes and PI3K-Akt signaling pathway as prognostic and therapeutic targets in gastric cancer identified by gene network modeling. Discov Oncol, 15(1), 2024, 344.
Li, Y., Luo, Y., Tian, Q., et al. Integrated bioinformatics analysis for identifying the significant genes as poor prognostic markers in gastric adenocarcinoma. J Oncol, 2022, 2022, 9080460.
Hernández, H.G., Aranzazu-Moya, G.C., Pinzón-Reyes, E.H., Aberrant, A.H.R.R., ADAMTS2 and FAM184 DNA methylation: candidate biomarkers in the oral rinse of heavy smokers. Biomedicines, 11(7), 2023, 1797.
Li, G., Li, X., Yang, M., Xu, L., Deng, S., Ran, L., Prediction of biomarkers of oral squamous cell carcinoma using microarray technology. Sci Rep, 7, 2017, 42105.
Carinci, F., Lo Muzio, L., Piattelli, A., et al. Potential markers of tongue tumor progression selected by cDNA microarray. Int J Immunopathol Pharmacol 18:3 (2005), 513–524.
Gao, Z.J., Fang, Z., Yuan, J.P., Sun, S.R., Li, B., Integrative multi-omics analyses unravel the immunological implication and prognostic significance of CXCL12 in breast cancer. Front Immunol, 14, 2023, 1188351.
Carter, E.P., Yoneten, K.K., Gavara, N., et al. Opposing roles for ADAMTS2 and ADAMTS14 in myofibroblast differentiation and function. J Pathol 262:1 (2024), 90–104.
Wang, W., He, Y., Wu, L., et al. N6-methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion. Cancer Med 12:3 (2023), 3731–3743.
Akyol, S., Cömertoğlu, I., Firat, R., et al. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells. Oncol Lett 10:2 (2015), 1091–1096.
Meng, K., Hu, X., Zheng, G., et al. Identification of prognostic biomarkers for papillary thyroid carcinoma by a weighted gene co-expression network analysis. Cancer Med 11:9 (2022), 2006–2019.
Fontaine, J.F., Mirebeau-Prunier, D., Raharijaona, M., et al. Increasing the number of thyroid lesions classes in microarray analysis improves the relevance of diagnostic markers. PLoS One, 4(10), 2009, e7632.
Ying, F., Guo, J., Gao, X., et al. Establishment of highly metastatic ovarian cancer model with omental tropism via in vivo selection. iScience, 26(5), 2023, 106719.
Hu, H., Wang, Y., Liu, Y., et al. Comprehensive analysis of ADAMTS gene family in renal clear cell carcinoma and ADAMTS10 research combining magnetic resonance imaging. Mol Biotechnol 66:11 (2024), 3136–3149.
Yuan, Z., Li, Y., Zhang, S., et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer, 22(1), 2023, 48.
Karlsson, S., Nyström, H., The extracellular matrix in colorectal cancer and its metastatic settling - alterations and biological implications. Crit Rev Oncol Hematol, 175, 2022, 103712.
Beatty, G.L., Gladney, W.L., Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21:4 (2015), 687–692.
Arning, A., Hiersche, M., Witten, A., et al. A genome-wide association study identifies a gene network of ADAMTS genes in the predisposition to pediatric stroke. Blood 120:26 (2012), 5231–5236.
Arning, A., Jeibmann, A., Köhnemann, S., et al. ADAMTS genes and the risk of cerebral aneurysm. J Neurosurg 125:2 (2016), 269–274.
Lee, C.W., Hwang, I., Park, C.S., et al. Expression of ADAMTS-2,-3,-13, and-14 in culprit coronary lesions in patients with acute myocardial infarction or stable angina. J Thromb Thrombolysis 33:4 (2012), 362–370.
Yao, Y., Hu, C., Song, Q., et al. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc Res 116:5 (2020), 956–969.
Heger, J., Schulz, R., Euler, G., Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol 173:1 (2016), 3–14.
Rau, C.D., Romay, M.C., Tuteryan, M., et al. Systems genetics approach identifies gene pathways and Adamts2 as drivers of isoproterenol-induced cardiac hypertrophy and cardiomyopathy in mice. Cell Syst 4:1 (2017), 121–128.e4.
Zhang, Y., Liu, Y., Zhu, X.H., et al. Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res 102:1 (2014), 35–45.
Bao, M.W., Cai, Z., Zhang, X.J., et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res Cardiol, 110(3), 2015, 25.
Zhai, C.G., Xu, Y.Y., Tie, Y.Y., et al. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J Mol Cell Cardiol 114 (2018), 243–252.
Sainz, J., Mata, I., Barrera, J., et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Mol Psychiatr 18:10 (2013), 1056–1057.
Crespo-Facorro, B., Prieto, C., Sainz, J., Schizophrenia gene expression profile reverted to normal levels by antipsychotics. Int J Neuropsychopharmacol, 18(4), 2014, pyu066.
Ruso-Julve, F., Pombero, A., Pilar-Cuéllar, F., et al. Dopaminergic control of ADAMTS2 expression through cAMP/CREB and ERK: molecular effects of antipsychotics. Transl Psychiatry, 9(1), 2019, 306.
Tsatsanis, A., McCorkindale, A.N., Wong, B.X., et al. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatr 26:10 (2021), 5516–5531.
McCorkindale, A.N., Patrick, E., Duce, J.A., Guennewig, B., Sutherland, G.T., The key factors predicting dementia in individuals with Alzheimer's disease-type pathology. Front Aging Neurosci, 14, 2022, 831967.
Anwar, M.M., Özkan, E., Gürsoy-Özdemir, Y., The role of extracellular matrix alterations in mediating astrocyte damage and pericyte dysfunction in Alzheimer's disease: a comprehensive review. Eur J Neurosci 56:9 (2022), 5453–5475.
Kocherhans, S., Madhusudan, A., Doehner, J., et al. Reduced Reelin expression accelerates amyloid- plaque formation and Tau pathology in transgenic Alzheimer's disease mice. J Neurosci 30:27 (2010), 9228–9240.
Colige, A., Vandenberghe, I., Thiry, M., et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 277:8 (2002), 5756–5766.
Broder, C., Arnold, P., Vadon-Le Goff, S., et al. Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci USA 110:35 (2013), 14219–14224.
Kronenberg, D., Bruns, B.C., Moali, C., et al. Processing of procollagen III by meprins: new players in extracellular matrix assembly?. J Invest Dermatol 130:12 (2010), 2727–2735.
Pluda, S., Mazzocato, Y., Angelini, A., Peptide-based inhibitors of ADAM and ADAMTS metalloproteinases. Front Mol Biosci, 8, 2021, 703715.
Apte, S.S., Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 473:1 (2016), e1–e4.
Hoshi, H., Akagi, R., Yamaguchi, S., et al. Effect of inhibiting MMP13 and ADAMTS5 by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res 368:2 (2017), 379–387.
Holm, D.E., van Wilpe, E., Harper, C.K., Duncan, N.M., The occurrence of dermatosparaxis in a commercial Drakensberger cattle herd in South Africa. J S Afr Vet Assoc 79:1 (2008), 19–24.
Silva, A.P.C., Mol, J.P.S., Carvalho, CA Jr, Paixão, T.A., Santos, R.L., Dermatosparaxis in two white doper lambs in Brazil: case report. Arq Bras Med Vet Zootec 67:3 (2015), 741–746.
Jaffey, J.A., Bullock, G., Guo, J., et al. Novel homozygous ADAMTS2 variants and associated disease phenotypes in dogs with dermatosparactic Ehlers-Danlos syndrome. Genes (Basel), 13(11), 2022, 2158.