Clarin‐1 and Clarin‐2; Usher syndrome type III; hearing phenotypic variability; ion homeostasis; mechanoelectrical transduction; synaptopathy
Abstract :
[en] Usher syndrome type III (USH3) is a genetic disorder characterized by progressive, post-lingual hearing loss, variable vestibular dysfunction, and onset of retinitis pigmentosa. USH3 is caused by mutations in CLRN1, which encodes clarin-1, a tetraspanin-like protein. Mutations in CLRN2, which encodes the related protein clarin-2, are also implicated in progressive, non-syndromic hearing loss in both humans and mice. USH3 patients show considerable phenotypic variability, even among individuals with the same mutation. This variability may result from environmental factors or interactions with other inner ear genes, such as CLRN2. To investigate the functional interplay of these genes, we generated Clrn1- /-Clrn2-/- double knockout mice. RNA-sequencing and functional/physiological analyses revealed that clarin-1 and clarin-2 jointly regulate mechanoelectrical transduction, ionic homeostasis, and synaptic organization. Their combined loss leads to more severe hearing phenotype compared to Clrn1-/- and Clrn2-/- mice, which reveals a functional compensation between them. CLRN2 variants may exacerbate hearing loss in USH3 patients, supporting inclusion of CLRN2 in genetic screening. By revealing a functional, compensatory interplay between clarin-1 and clarin-2, this study reframes CLRN1-associated deafness as a network-dependent disorder and provides a mechanistic basis for genetic stratification and therapeutic directions in USH3 and related sensorineural hearing loss.
Wentling, Maureen; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France ; Collège Doctoral ED515, Sorbonne Université, Paris, France
Yakhlef Sanchez, Aïda; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France ; Collège Doctoral ED158, Sorbonne Université, Paris, France
Thelen, Nicolas ; Université de Liège - ULiège > Département des sciences de la vie > Biologie cellulaire
Senarisoy, Müge; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Hogg, Maria; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Condamine, Steven; Laboratoire De Neurophysiologie de La Synapse Auditive, Institut De L'audition and Université de Bordeaux, Bordeaux, France
Lelli, Andrea; Institut Pasteur, Institut De L'audition, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, IHU reConnect, Auditory Therapies Innovation Laboratory, Université Paris Cité, Paris, France
Wysocka, Emilia; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Patni, Pranav; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France ; Collège Doctoral ED515, Sorbonne Université, Paris, France
Vitry, Sandrine; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Yildizhan, Kerem Yasin; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Le Gal, Sébastien; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Nouaille, Sylvie; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
Bowl, Michael R; UCL Ear Institute, University College London, London, UK
Thiry, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Service collectif des enseignements de biologie en bachelier ; Collège Doctoral ED158, Sorbonne Université, Paris, France
Dulon, Didier; Laboratoire De Neurophysiologie de La Synapse Auditive, Institut De L'audition and Université de Bordeaux, Bordeaux, France
Delmaghani, Sedigheh ; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
El-Amraoui, Aziz; Institut Pasteur, Institut De L'audition, AP-HP, INSERM U1335, CNRS, Fondation Pour l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, Université Paris Cité, Paris, France
S. Delmaghani and A. El-Amraoui, “Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges,” Journal of Clinical Medicine 9, no. 7 (2020): 2309, https://doi.org/10.3390/jcm9072309.
N. J. Ingham, S. A. Pearson, V. E. Vancollie, et al., “Mouse Screen Reveals Multiple New Genes Underlying Mouse and Human Hearing Loss,” PLoS Biology 17, no. 4 (2019): 3000194, https://doi.org/10.1371/journal.pbio.3000194.
S. Taiber, K. Gwilliam, R. Hertzano, and K. B. Avraham, “The Genomics of Auditory Function and Disease,” Annual Review of Genomics and Human Genetics 23 (2022): 275–299, https://doi.org/10.1146/annurev-genom-121321-094136.
G. Livingston, J. Huntley, A. Sommerlad, et al., “Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission,” The Lancet 396, no. 10248 (2020): 413–446, https://doi.org/10.1016/S0140-6736(20)30367-6.
Y. Jin, X. Liu, Q. Zhang, and Y. Xiong, “Next-Generation Sequencing of Chinese Children with Congenital Hearing Loss Reveals Rare and Novel Variants in Known and Candidate Genes,” Biomedicines 12, no. 12 (2024): 2657.
H. J. Bolz and A. F. Roux, “Clinical Utility Gene Card for: Usher Syndrome,” European Journal of Human Genetics 19, no. 8 (2011).
J. M. Millan, E. Aller, T. Jaijo, and F. Blanco-Kelly, “An Update on the Genetics of Usher Syndrome,” J Ophthalmol 2011 (2011): 417217.
C. Bonnet and A. El-Amraoui, “Usher Syndrome (Sensorineural Deafness and Retinitis Pigmentosa),” Current Opinion in Neurology 25, no. 1 (2012): 42–49, https://doi.org/10.1097/WCO.0b013e32834ef8b2.
S. Delmaghani and A. El-Amraoui, “The Genetic and Phenotypic Landscapes of Usher Syndrome: from Disease Mechanisms to a New Classification,” Human Genetics 141, no. 3-4 (2022): 709–735, https://doi.org/10.1007/s00439-022-02448-7.
L. A. Dunbar, P. Patni, C. Aguilar, et al., “Clarin-2 Is Essential for Hearing by Maintaining Stereocilia Integrity and Function,” EMBO Molecular Medicine 11, no. 9 (2019): 10288, https://doi.org/10.15252/emmm.201910288.
B. Vona, N. Mazaheri, S.-J. Lin, et al., “A Biallelic Variant in CLRN2 Causes Non-Syndromic Hearing Loss in Humans,” Human Genetics 140, no. 6 (2021): 915–931, https://doi.org/10.1007/s00439-020-02254-z.
F. Ahmad, A. Mahmood, I. A. Almazni, et al., “A Novel CLRN2 Variant: Expanding the Mutation Spectrum and Its Critical Role in Isolated Hearing Impairment,” Genes & Genomics 47, no. 4 (2025): 417–423, https://doi.org/10.1007/s13258-024-01590-y.
C. Mendia, T. Peineau, M. Zamani, et al., “Clarin-2 Gene Supplementation Durably Preserves Hearing in a Model of Progressive Hearing Loss,” Molecular Therapy 32, no. 3 (2024): 800–817, https://doi.org/10.1016/j.ymthe.2024.01.021.
A. Adato, S. Vreugde, T. Joensuu, et al., “USH3A transcripts Encode Clarin-1, a Four-Transmembrane-Domain Protein with a Possible Role in Sensory Synapses,” European Journal of Human Genetics 10, no. 6 (2002): 339–350, https://doi.org/10.1038/sj.ejhg.5200831.
R. Geng, S. F. Geller, T. Hayashi, et al., “Usher Syndrome IIIA Gene Clarin-1 Is Essential for Hair Cell Function and Associated Neural Activation,” Human Molecular Genetics 18, no. 15 (2009): 2748–2760, https://doi.org/10.1093/hmg/ddp210.
D. Dulon, S. Papal, P. Patni, et al., “Clarin-1 Gene Transfer Rescues Auditory Synaptopathy in Model of Usher Syndrome,” Journal of Clinical Investigation 128, no. 8 (2018): 3382–3401, https://doi.org/10.1172/JCI94351.
T. A. Babola, S. Li, Z. Wang, et al., “Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development,” The Journal of Neuroscience 41, no. 4 (2021): 594–612, https://doi.org/10.1523/JNEUROSCI.2178-20.2020.
B. R. Shrestha, C. Chia, L. Wu, S. G. Kujawa, M. C. Liberman, and L. V. Goodrich, “Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity,” Cell 174, no. 5 (2018): 1229–1246.e17, https://doi.org/10.1016/j.cell.2018.07.007.
S. Sun, T. Babola, G. Pregernig, et al., “Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral Ganglion Subtype Specification in the Auditory System,” Cell 174, no. 5 (2018): 1247–1263.e15, https://doi.org/10.1016/j.cell.2018.07.008.
E. Aller, T. Jaijo, S. Oltra, et al., “Mutation Screening of USH3 Gene (clarin-1) in Spanish Patients with Usher Syndrome: Low Prevalence and Phenotypic Variability,” Clinical Genetics 66, no. 6 (2004): 525–529, https://doi.org/10.1111/j.1399-0004.2004.00352.x.
S. L. Ness, T. Ben-Yosef, A. Bar-Lev, et al., “Genetic Homogeneity and Phenotypic Variability among Ashkenazi Jews with Usher Syndrome Type III,” Journal of Medical Genetics 40, no. 10 (2003): 767–772, https://doi.org/10.1136/jmg.40.10.767.
H. Västinsalo, R. Jalkanen, A. Dinculescu, et al., “Alternative Splice Variants of the USH3A Gene Clarin 1 (CLRN1),” European Journal of Human Genetics 19, no. 1 (2011): 30–35, https://doi.org/10.1038/ejhg.2010.140.
R. Geng, S. Melki, D. H.-C. Chen, et al., “The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene,” Journal of Neuroscience 32, no. 28 (2012): 9485–9498, https://doi.org/10.1523/JNEUROSCI.0311-12.2012.
V. Michel, K. T. Booth, P. Patni, et al., “CIB2, defective in Isolated Deafness, Is Key for Auditory Hair Cell Mechanotransduction and Survival,” EMBO Molecular Medicine 9, no. 12 (2017): 1711–1731, https://doi.org/10.15252/emmm.201708087.
W. Xiong, N. Grillet, H. M. Elledge, et al., “TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells,” Cell 151, no. 6 (2012): 1283–1295, https://doi.org/10.1016/j.cell.2012.10.041.
B. Zhao, Z. Wu, N. Grillet, et al., “TMIE Is an Essential Component of the Mechanotransduction Machinery of Cochlear Hair Cells,” Neuron 84, no. 5 (2014): 954–967, https://doi.org/10.1016/j.neuron.2014.10.041.
K. Luck, D.-K. Kim, L. Lambourne, et al., “A Reference Map of the human Binary Protein Interactome,” Nature 580, no. 7803 (2020): 402–408, https://doi.org/10.1038/s41586-020-2188-x.
E. Pepermans, V. Michel, R. Goodyear, et al., “The CD 2 Isoform of Protocadherin-15 Is an Essential Component of the Tip-Link Complex in Mature Auditory Hair Cells,” EMBO Molecular Medicine 6, no. 7 (2014): 984–992, https://doi.org/10.15252/emmm.201403976.
N. Li, S. Liu, D. Zhao, et al., “Disruption of Cdh23 Exon 68 Splicing Leads to Progressive Hearing Loss in Mice by Affecting Tip-Link Stability,” Proceedings of the National Academy of Sciences U S A 121, no. 10 (2024): 2309656121, https://doi.org/10.1073/pnas.2309656121.
Q. Chen, S. Mahendrasingam, J. A. Tickle, C. M. Hackney, D. N. Furness, and R. Fettiplace, “The Development, Distribution and Density of the Plasma Membrane Calcium ATPase 2 Calcium Pump in Rat Cochlear Hair Cells,” European Journal of Neuroscience 36, no. 3 (2012): 2302–2310, https://doi.org/10.1111/j.1460-9568.2012.08159.x.
A. Hafidi, M. Beurg, and D. Dulon, “Localization and Developmental Expression of BK Channels in Mammalian Cochlear Hair Cells,” Neuroscience 130, no. 2 (2005): 475–484, https://doi.org/10.1016/j.neuroscience.2004.09.038.
S. J. Pyott, E. Glowatzki, J. S. Trimmer, and R. W. Aldrich, “Extrasynaptic Localization of Inactivating Calcium-Activated Potassium Channels in Mouse Inner Hair Cells,” The Journal of Neuroscience 24, no. 43 (2004): 9469–9474, https://doi.org/10.1523/JNEUROSCI.3162-04.2004.
W. Marcotti, S. L. Johnson, M. C. Holley, and C. J. Kros, “Developmental Changes in the Expression of Potassium Currents of Embryonic, Neonatal and Mature Mouse Inner Hair Cells,” The Journal of Physiology 548, no. Pt 2 (2003): 383–400, https://doi.org/10.1113/jphysiol.2002.034801.
L. D. Liberman, H. Wang, and M. C. Liberman, “Opposing Gradients of Ribbon Size and AMPA Receptor Expression Underlie Sensitivity Differences among Cochlear-Nerve/Hair-Cell Synapses,” The Journal of Neuroscience 31, no. 3 (2011): 801–808, https://doi.org/10.1523/JNEUROSCI.3389-10.2011.
W. Marcotti, A. Erven, S. L. Johnson, K. P. Steel, and C. J. Kros, “Tmc1 is Necessary for Normal Functional Maturation and Survival of Inner and Outer Hair Cells in the Mouse Cochlea,” The Journal of Physiology 574, no. Pt 3 (2006): 677–698, https://doi.org/10.1113/jphysiol.2005.095661.
K. X. Kim and R. Fettiplace, “Developmental Changes in the Cochlear Hair Cell Mechanotransducer Channel and Their Regulation by Transmembrane Channel–Like Proteins,” Journal of General Physiology 141, no. 1 (2013): 141–148, https://doi.org/10.1085/jgp.201210913.
Y. Kawashima, G. S. G. Géléoc, K. Kurima, et al., “Mechanotransduction in Mouse Inner Ear Hair Cells Requires Transmembrane Channel–Like Genes,” Journal of Clinical Investigation 121, no. 12 (2011): 4796–4809, https://doi.org/10.1172/JCI60405.
R. Fettiplace, D. N. Furness, and M. Beurg, “The Conductance and Organization of the TMC1-Containing Mechanotransducer Channel Complex in Auditory Hair Cells,” Proceedings of the National Academy of Sciences U S A 119, no. 41 (2022): 2210849119, https://doi.org/10.1073/pnas.2210849119.
P. Kazmierczak, H. Sakaguchi, J. Tokita, et al., “Cadherin 23 and Protocadherin 15 Interact to Form Tip-Link Filaments in Sensory Hair Cells,” Nature 449, no. 7158 (2007): 87–91, https://doi.org/10.1038/nature06091.
K. Kurima, S. Ebrahim, B. Pan, et al., “TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia,” Cell Reports 12, no. 10 (2015): 1606–1617, https://doi.org/10.1016/j.celrep.2015.07.058.
S. Mahendrasingam and D. N. Furness, “Ultrastructural Localization of the Likely Mechanoelectrical Transduction Channel Protein, Transmembrane-Like Channel 1 (TMC1) during Development of Cochlear Hair Cells,” Scientific Reports 9, no. 1 (2019): 1274, https://doi.org/10.1038/s41598-018-37563-x.
B. Pan, G. S. Géléoc, Y. Asai, et al., “TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear,” Neuron 79, no. 3 (2013): 504–515, https://doi.org/10.1016/j.neuron.2013.06.019.
B. Pan, N. Akyuz, X.-P. Liu, et al., “TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells,” Neuron 99, no. 4 (2018): 736–753.e6, https://doi.org/10.1016/j.neuron.2018.07.033.
A. P. J. Giese, Y.-Q. Tang, G. P. Sinha, et al., “CIB2 interacts with TMC1 and TMC2 and Is Essential for Mechanotransduction in Auditory Hair Cells,” Nature Communications 8, no. 1 (2017): 43, https://doi.org/10.1038/s41467-017-00061-1.
A. P. J. Giese, W.-H. Weng, and K. S. Kindt, “Complexes of Vertebrate TMC1/2 and CIB2/3 Proteins Form Hair-Cell Mechanotransduction Cation Channels,” Elife 12 (2025).
C. L. Cunningham and U. Muller, “Molecular Structure of the Hair Cell Mechanoelectrical Transduction Complex,” Cold Spring Harbor Perspectives in Medicine 9, no. 5 (2019): a033167.
C. L. Cunningham, X. Qiu, Z. Wu, et al., “TMIE Defines Pore and Gating Properties of the Mechanotransduction Channel of Mammalian Cochlear Hair Cells,” Neuron 107, no. 1 (2020): 126–143.e8, https://doi.org/10.1016/j.neuron.2020.03.033.
W. Zheng and J. R. Holt, “The Mechanosensory Transduction Machinery in Inner Ear Hair Cells,” Annual Review of Biophysics 50 (2021): 31–51, https://doi.org/10.1146/annurev-biophys-062420-081842.
H. Ren, Q. Ou, Q. Pu, and Y. Lou, “Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways,” Biomolecules 14, no. 7 (2024): 859.
T. Ueyama, Y. Ninoyu, S.-Y. Nishio, et al., “Constitutive Activation of DIA 1 (DIAPH 1) via C-Terminal Truncation Causes Human Sensorineural Hearing Loss,” EMBO Molecular Medicine 8, no. 11 (2016): 1310–1324, https://doi.org/10.15252/emmm.201606609.
L. F. Corns, S. L. Johnson, T. Roberts, et al., “Mechanotransduction Is Required for Establishing and Maintaining Mature Inner Hair Cells and Regulating Efferent Innervation,” Nature Communications 9, no. 1 (2018): 4015, https://doi.org/10.1038/s41467-018-06307-w.
A. C. Velez-Ortega, M. J. Freeman, and A. A. Indzhykulian, “Mechanotransduction Current Is Essential for Stability of the Transducing Stereocilia in Mammalian Auditory Hair Cells,” Elife 6 (2017): 24661.
M. Beurg, A. Hafidi, L. J. Skinner, et al., “Ryanodine Receptors and BK Channels Act as a Presynaptic Depressor of Neurotransmission in Cochlear Inner Hair Cells,” European Journal of Neuroscience 22, no. 5 (2005): 1109–1119, https://doi.org/10.1111/j.1460-9568.2005.04310.x.
L. J. Skinner, V. Enée, M. Beurg, et al., “Contribution of BK Ca2+-Activated K+ Channels to Auditory Neurotransmission in the Guinea Pig Cochlea,” Journal of Neurophysiology 90, no. 1 (2003): 320–332, https://doi.org/10.1152/jn.01155.2002.
C. J. Lingle, P. L. Martinez-Espinosa, A. Yang-Hood, et al., “LRRC52 regulates BK Channel Function and Localization in Mouse Cochlear Inner Hair Cells,” Proceedings of the National Academy of Sciences 116, no. 37 (2019): 18397–18403, https://doi.org/10.1073/pnas.1907065116.
J. Lee, K. Kawai, and J. R. Holt, “Sensory Transduction Is Required for Normal Development and Maturation of Cochlear Inner Hair Cell Synapses,” Elife 10 (2021): 69433.
L. Chen, D. M. Chetkovich, R. S. Petralia, et al., “Stargazin Regulates Synaptic Targeting of AMPA Receptors by Two Distinct Mechanisms,” Nature 408, no. 6815 (2000): 936–943, https://doi.org/10.1038/35050030.
E. Schnell, M. Sizemore, S. Karimzadegan, L. Chen, D. S. Bredt, and R. A. Nicoll, “Direct Interactions between PSD-95 and Stargazin Control Synaptic AMPA Receptor Number,” Proceedings of the National Academy of Sciences 99, no. 21 (2002): 13902–13907, https://doi.org/10.1073/pnas.172511199.
C. Bats, L. Groc, and D. Choquet, “The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking,” Neuron 53, no. 5 (2007): 719–734, https://doi.org/10.1016/j.neuron.2007.01.030.
M. L. A. Fehrmann, C. P. Lanting, L. Haer-Wigman, et al., “Long-Term Outcomes of Cochlear Implantation in Usher Syndrome,” Ear & Hearing 45, no. 6 (2024): 1542–1553, https://doi.org/10.1097/AUD.0000000000001544.
R. Geng, A. Omar, S. R. Gopal, et al., “Modeling and Preventing Progressive Hearing Loss in Usher Syndrome III,” Scientific Reports 7, no. 1 (2017): 13480, https://doi.org/10.1038/s41598-017-13620-9.
B. György, E. J. Meijer, M. V. Ivanchenko, et al., “Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-Human Primate,” Molecular Therapy—Methods & Clinical Development 13 (2019): 1–13, https://doi.org/10.1016/j.omtm.2018.11.003.
J. Qi, F. Tan, L. Zhang, and L. Lu, “AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness,” Advanced Science 11, no. 11 (2024): 2306788.
J. Qi, L. Zhang, L. Lu, et al., “AAV Gene Therapy for Autosomal Recessive Deafness 9: a Single-Arm Trial,” Nature Medicine 31, no. 9 (2025): 2917–2926, https://doi.org/10.1038/s41591-025-03773-w.
J. Xiang, Y. Jin, N. Song, et al., “Comprehensive Genetic Testing Improves the Clinical Diagnosis and Medical Management of Pediatric Patients with Isolated Hearing Loss,” BMC Medical Genomics 15, no. 1 (2022): 142, https://doi.org/10.1186/s12920-022-01293-x.
E. Caberlotto, V. Michel, I. Foucher, et al., “Usher Type 1G Protein Sans Is a Critical Component of the Tip-Link Complex, a Structure Controlling Actin Polymerization in Stereocilia,” Proceedings of the National Academy of Sciences 108, no. 14 (2011): 5825–5830, https://doi.org/10.1073/pnas.1017114108.
H. Pan, Q. Song, Y. Huang, et al., “Auditory Neuropathy after Damage to Cochlear Spiral Ganglion Neurons in Mice Resulting from Conditional Expression of Diphtheria Toxin Receptors,” Scientific Reports 7, no. 1 (2017): 6409, https://doi.org/10.1038/s41598-017-06600-6.
L. Feng, X. Xie, P. S. Joshi, et al., “Requirement for Bhlhb5 in the Specification of Amacrine and Cone Bipolar Subtypes in Mouse Retina,” Development 133, no. 24 (2006): 4815–4825, https://doi.org/10.1242/dev.02664.
S. E. Ross, A. R. Mardinly, A. E. McCord, et al., “Loss of Inhibitory Interneurons in the Dorsal Spinal Cord and Elevated Itch in Bhlhb5 Mutant Mice,” Neuron 65, no. 6 (2010): 886–898, https://doi.org/10.1016/j.neuron.2010.02.025.
G. F. Codner, J. Mianné, A. Caulder, et al., “Application of Long Single-Stranded DNA Donors in Genome Editing: Generation and Validation of Mouse Mutants,” BMC Biology 16, no. 1 (2018): 70, https://doi.org/10.1186/s12915-018-0530-7.
J. Mianné, L. Chessum, S. Kumar, et al., “Correction of the Auditory Phenotype in C57BL/6N Mice via CRISPR/Cas9-Mediated Homology Directed Repair,” Genome Medicine 8, no. 1 (2016): 16, https://doi.org/10.1186/s13073-016-0273-4.
A. Lelli, V. Michel, J. Boutet de Monvel, et al., “Class III Myosins Shape the Auditory Hair Bundles by Limiting Microvilli and Stereocilia Growth,” Journal of Cell Biology 212, no. 2 (2016): 231–244, https://doi.org/10.1083/jcb.201509017.
A. Khosla, C. Rodriguez-Furlan, S. Kapoor, J. M. Van Norman, and D. C. Nelson, “A Series of Dual-Reporter Vectors for Ratiometric Analysis of Protein Abundance in Plants,” Plant Direct 4, no. 6 (2020): 00231, https://doi.org/10.1002/pld3.231.
Y. J. Shyu, H. Liu, X. Deng, and C.-D. Hu, “Identification of New Fluorescent Protein Fragments for Bimolecular Fluorescence Complementation Analysis under Physiological Conditions,” Biotechniques 40, no. 1 (2006): 61–66, https://doi.org/10.2144/000112036.