Article (Scientific journals)
Generating survey databases with Wasserstein Generative Adversarial Networks
Annoye, Hugues; Heuchenne, Cédric
2025In Applied Intelligence, 55 (17)
Peer Reviewed verified by ORBi
 

Files


Full Text
s10489-025-06871-x.pdf
Embargo Until 01/Apr/2026 - Author postprint (2.79 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Generative adversarial network; Sampling weights; Support vector data description; Synthetic data set; Wasserstein distance; Wasserstein generative adversarial network; Adversarial networks; Anonymization; Sampling weight; Survey data; Synthetic database; Synthetic datasets; Artificial Intelligence
Abstract :
[en] In a world increasingly surrounded by data, data privacy and anonymization are becoming more and more important. Under these circumstances, the need for synthetic databases that replicate the characteristics of the population while preserving privacy is arising. In this article, we investigate how we can use Wasserstein Generative Adversarial Networks (WGANs), developed by Arjovsky et al. [1] in the context of image generation, to create synthetic survey databases. Survey data have both categorical and continuous variables and especially contain sampling weights that will be introduced in the proposed procedures. We evaluate the quality of the (generated) synthetic data through different indicators and especially a new practical and intuitive measure based on Support Vector Data Description (SVDD). All our analyses are achieved with the Labour Force Survey (LFS) data for Belgium.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Annoye, Hugues ;  CAPE, UCLouvain Saint-Louis Bruxelles, Brussels, Belgium ; ISBA, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Heuchenne, Cédric  ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Statistique appliquée à la gestion et à l'économie ; CAPE, UCLouvain Saint-Louis Bruxelles, Brussels, Belgium ; ISBA, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Generating survey databases with Wasserstein Generative Adversarial Networks
Publication date :
November 2025
Journal title :
Applied Intelligence
ISSN :
0924-669X
eISSN :
1573-7497
Publisher :
Springer
Volume :
55
Issue :
17
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ERDF - European Regional Development Fund
Funding text :
This work was partially funded by European Regional Development Fund (ERDF, project 2021BE16RFPR001-T-11-05).
Available on ORBi :
since 23 January 2026

Statistics


Number of views
6 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi