Laurent, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Stefan Alfredsson
Mohammad Rajiullah
Johan Eklund
Language :
English
Title :
Towards zero-energy: Navigating the future with 6G in Cellular Internet of Things
3GPP, The mobile broadband standard partnership project 3GPP release 17. 2022 URL: https://www.3gpp.org/specifications-technologies/releases/release-17. (Accessed 3 November 2022).
3GPP, The mobile broadband standard partnership project, 3GPP release 18. 2022 URL: https://www.3gpp.org/specifications-technologies/releases/release-18. (Accessed 3 November 2022).
Abbas, M.T., Grinnemo, K.-J., Eklund, J., Alfredsson, S., Rajiullah, M., Brunstrom, A., Caso, G., Kousias, K., Alay, Ö., Energy-saving solutions for cellular Internet of Things-A survey. IEEE Access 10 (2022), 62073–62096.
Abuellil, A., Estrada-López, J.J., Bommireddipalli, A., Costilla-Reyes, A., Zeng, Z., Sánchez-Sinencio, E., Multiple-input harvesting power management unit with enhanced boosting scheme for IoT applications. IEEE Trans. Ind. Electron. 67:5 (2019), 3662–3672.
Adegbija, T., Rogacs, A., Patel, C., Gordon-Ross, A., Microprocessor optimizations for the internet of things: A survey. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37:1 (2017), 7–20.
Adila, A.S., Husam, A., Husi, G., Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. 2018 2nd International Symposium on Small-Scale Intelligent Manufacturing Systems, SIMS, 2018, IEEE, 1–5.
Agrawal, S., Chopra, K., et al. Analysis of energy efficient narrowband Internet of Things (NB-IoT): LPWAN comparison, challenges, and opportunities. Wireless Commun. Artif. Intell., 2023, 197–217.
Ahmad, F.F., Ghenai, C., Bettayeb, M., Maximum power point tracking and photovoltaic energy harvesting for Internet of Things: A comprehensive review. Sustain. Energy Technol. Assess., 47, 2021, 101430.
Ahmed, S.F., Alam, M.S.B., Afrin, S., Rafa, S.J., Taher, S.B., Kabir, M., Muyeen, S., Gandomi, A.H., Towards a secure 5G-enabled Internet of Things: A survey on requirements, privacy, security, challenges, and opportunities. IEEE Access, 2024.
Akesson, S., GPRS, general packet radio service. Proceedings of ICUPC’95-4th IEEE International Conference on Universal Personal Communications, 1995, IEEE, 640–643.
Al-Turjman, F., Ever, E., Zahmatkesh, H., Small cells in the forthcoming 5G/IoT: traffic modelling and deployment overview. IEEE Commun. Surv. Tutor. 21:1 (2018), 28–65.
Alraih, S., Shayea, I., Behjati, M., Nordin, R., Abdullah, N.F., Abu-Samah, A., Nandi, D., Revolution or evolution? Technical requirements and considerations towards 6G mobile communications. Sensors, 22(3), 2022, 762.
Alsaba, Y., Rahim, S.K.A., Leow, C.Y., Beamforming in wireless energy harvesting communications systems: A survey. IEEE Commun. Surv. Tutor. 20:2 (2018), 1329–1360.
Alsharif, M.H., Kim, S., Kuruoğlu, N., Energy harvesting techniques for wireless sensor networks/radio-frequency identification: A review. Symmetry, 11(7), 2019, 865.
Alves, H., Lopez, O.A., Wireless RF Energy Transfer in the Massive IoT Era: Towards Sustainable Zero-energy Networks. 2021, John Wiley & Sons.
Amer, A.A.G., Sapuan, S.Z., Nasimuddin, N., Alphones, A., Zinal, N.B., A comprehensive review of metasurface structures suitable for RF energy harvesting. IEEE Access 8 (2020), 76433–76452.
Andres-Maldonado, P., Lauridsen, M., Ameigeiras, P., Lopez-Soler, J.M., Analytical modeling and experimental validation of NB-IoT device energy consumption. IEEE Internet Things J. 6:3 (2019), 5691–5701.
Arouk, O., Ksentini, A., Taleb, T., Group paging-based energy saving for massive MTC accesses in LTE and beyond networks. IEEE J. Sel. Areas Commun. 34:5 (2016), 1086–1102.
Arunsundar, B., Sakthivel, P., Natarajan, E., Analysis of energy consumption and latency in advanced wireless networks through DRX mechanism. J. Supercomput. 76:5 (2020), 3765–3787.
Ashraf, N., Sheikh, S.A., Khan, S.A., Shayea, I., Jalal, M., Simultaneous wireless information and power transfer with cooperative relaying for next-generation wireless networks: A review. IEEE Access 9 (2021), 71482–71504.
Awan, W.A., Zaidi, A., Hussain, N., Khalid, S., Baghdad, A., et al. Frequency reconfigurable patch antenna for millimeter wave applications. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies, iCoMET, 2019, IEEE, 1–5.
Baroudi, U., Mekid, S., Bouhraoua, A., et al. Radio frequency energy harvesting characterization: an experimental study. 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 2012, IEEE, 1976–1981.
Bassett, E., Potter, F., Capacitive excitation for induction generators. Trans. Am. Inst. Electr. Eng. 54:5 (1935), 540–545.
Bechthum, E., El Soussi, M., Dijkhuis, J.F., Mateman, P., van Schaik, G.-J., Breeschoten, A., Liu, Y.-H., Bachmann, C., A CMOS polar class-G switched-capacitor PA with a single high-current supply, for LTE NB-IoT and eMTC. IEEE J. Solid-State Circuits 54:7 (2019), 1941–1951.
Beeby, S.P., O'Donnell, T., Electromagnetic energy harvesting. Energy Harvesting Technologies, 2009, Springer, 129–161.
Bellier, P., Laurent, P., Stoukatch, S., Dupont, F., Joris, L., Kraft, M., Autonomous micro-platform for multisensors with an advanced power management unit (PMU). J. Sens. Sens. Syst. 7:1 (2018), 299–308.
Bello, H., Jian, X., Wei, Y., Chen, M., Energy-delay evaluation and optimization for NB-IoT PSM with periodic uplink reporting. IEEE Access 7 (2018), 3074–3081.
Benhiba, B.E., Madi, A.A., Addaim, A., Comparative study of the various new cellular iot technologies. 2018 International Conference on Electronics, Control, Optimization and Computer Science, ICECOCS, 2018, IEEE, 1–4.
Bhat, Z.A., Sofi, I.B., Masoodi, I.S., Smart energy-saving solutions based on artificial intelligence and other emerging technologies for 5G wireless and beyond networks communications. Intelligent Signal Processing and RF Energy Harvesting for State of art 5G and B5G Networks, 2024, Springer, 77–95.
Bi, S., Ho, C.K., Zhang, R., Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 53:4 (2015), 117–125.
Bing, J.L., Rong, Y., Gopal, L., Chiong, C.W., Transceiver design for SWIPT MIMO relay systems with hybridized power-time splitting-based relaying protocol. IEEE Access 8 (2020), 190922–190933.
Bito, J., Bahr, R., Hester, J.G., Nauroze, S.A., Georgiadis, A., Tentzeris, M.M., A novel solar and electromagnetic energy harvesting system with a 3-d printed package for energy efficient internet-of-things wireless sensors. IEEE Trans. Microw. Theory Tech. 65:5 (2017), 1831–1842.
Boisguene, R., Tseng, S.-C., Huang, C.-W., Lin, P., A survey on NB-IoT downlink scheduling: Issues and potential solutions. 2017 13th International Wireless Communications and Mobile Computing Conference, IWCMC, 2017, IEEE, 547–551.
Bontu, C.S., Illidge, E., DRX mechanism for power saving in LTE. IEEE Commun. Mag. 47:6 (2009), 48–55.
Boshkovska, E., Ng, D.W.K., Zlatanov, N., Schober, R., Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 19:12 (2015), 2082–2085.
Boughaleb, J., Arnaud, A., Cottinet, P., Monfray, S., Quenard, S., Boeuf, F., Guyomar, D., Skotnicki, T., Analysis of the thermal impact of a bimetal on the dynamic behavior of a thermal energy harvester. Sensors Actuators A 236 (2015), 104–115.
Boumaalif, A., Zytoune, O., El Fadil, H., Saadane, R., Power distribution of D2D communications in case of energy harvesting capability over κ-μ shadowed fading conditions. J. Sens. Actuat. Netw., 12(1), 2023, 16.
Bres, A., Guillerat, V., Ferré, G., Hemour, S., Towards battery-Free Wide Area network with ultra-low voltage chirp spread spectrum modulation. 2022 Wireless Power Week, WPW, 2022, 558–562, 10.1109/WPW54272.2022.9853895.
Brown, W.C., The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32:9 (1984), 1230–1242.
Butt, M.M., Mangalvedhe, N.R., Pratas, N.K., Harrebek, J., Kimionis, J., Tayyab, M., Barbu, O.-E., Ratasuk, R., Vejlgaard, B., Ambient IoT: A missing link in 3GPP IoT devices landscape. IEEE Internet Things Mag. 7:2 (2024), 85–92.
Buurman, B., Kamruzzaman, J., Karmakar, G., Islam, S., Low-power wide-area networks: Design goals, architecture, suitability to use cases and research challenges. IEEE Access 8 (2020), 17179–17220.
Cansiz, M., Altinel, D., Kurt, G.K., Efficiency in RF energy harvesting systems: A comprehensive review. Energy 174 (2019), 292–309.
Carneiro, P., dos Santos, M.P.S., Rodrigues, A., Ferreira, J.A., Simões, J.A., Marques, A.T., Kholkin, A.L., Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy, 260, 2020, 114191.
Carreon-Bautista, S., Huang, L., Sanchez-Sinencio, E., An autonomous energy harvesting power management unit with digital regulation for IoT applications. IEEE J. Solid-State Circuits 51:6 (2016), 1457–1474.
Casini, M., Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy-Efficiency and Environmental Performance. 2016, Woodhead Publishing.
Chabalko, M., Besnoff, J., Laifenfeld, M., Ricketts, D.S., Resonantly coupled wireless power transfer for non-stationary loads with application in automotive environments. IEEE Trans. Ind. Electron. 64:1 (2016), 91–103.
Charef, N., Mnaouer, A.B., Bouachir, O., AI-based energy model for adaptive duty cycle scheduling in wireless networks. 2021 International Symposium on Networks, Computers and Communications, ISNCC, 2021, IEEE, 1–6.
Charris, D., Gomez, D., Ortega, A.R., Carmona, M., Pardo, M., A thermoelectric energy harvesting scheme with passive cooling for outdoor IoT sensors. Energies, 13(11), 2020, 2782.
Chaudhari, B.S., Zennaro, M., Borkar, S., LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet, 12(3), 2020, 46.
Cheng, Y.-P., Chao, P.C.-P., Men, G.-Y., Yang, C.-C., Wang, T.-W., An 80% effeciency and highly adaptable PV energy harvest circuitry with MPPT for IoT devices. 2017 IEEE Sensors, 2017, IEEE, 1–3.
Cherry, M., 2024. Cherry MX - die Besten Schalter für mechanische Tastaturen. URL: https://www.cherrymx.de/. CHERRY MX - Schalter für mechanische Tastaturen.
Chinipardaz, M., Amraee, S., Study on IoT networks with the combined use of wireless power transmission and solar energy harvesting. Sādhanā, 47(2), 2022, 86.
Choi, K.W., Hwang, S.I., Aziz, A.A., Jang, H.H., Kim, J.S., Kang, D.S., Kim, D.I., Simultaneous wireless information and power transfer (SWIPT) for Internet of Things: Novel receiver design and experimental validation. IEEE Internet Things J. 7:4 (2020), 2996–3012.
Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., kumar Suhag, A., A survey–Energy harvesting sources and techniques for internet of things devices. Mater. Today: Proc. 30 (2020), 52–56.
Chu, M., Li, H., Liao, X., Cui, S., Reinforcement learning-based multiaccess control and battery prediction with energy harvesting in IoT systems. IEEE Internet Things J. 6:2 (2018), 2009–2020.
Clerckx, B., Zhang, R., Schober, R., Ng, D.W.K., Kim, D.I., Poor, H.V., Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs. IEEE J. Sel. Areas Commun. 37:1 (2018), 4–33.
Costanzo, A., Dionigi, M., Masotti, D., Mongiardo, M., Monti, G., Tarricone, L., Sorrentino, R., Electromagnetic energy harvesting and wireless power transmission: A unified approach. Proc. IEEE 102:11 (2014), 1692–1711.
Costanzo, A., Masotti, D., Paolini, G., Schreurs, D., Evolution of SWIPT for the IoT world: Near-and far-field solutions for simultaneous wireless information and power transfer. IEEE Microw. Mag. 22:12 (2021), 48–59.
Covic, G.A., Boys, J.T., Kissin, M.L., Lu, H.G., A three-phase inductive power transfer system for roadway-powered vehicles. IEEE Trans. Ind. Electron. 54:6 (2007), 3370–3378.
Dai, J., Ludois, D.C., Capacitive power transfer through a conformal bumper for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 4:3 (2015), 1015–1025.
De Alwis, C., Kalla, A., Pham, Q.-V., Kumar, P., Dev, K., Hwang, W.-J., Liyanage, M., Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2 (2021), 836–886.
de Queiroz, A.C.M., Electrostatic energy harvesting using capacitive generators without control circuits. Analog Integr. Circuits Signal Process. 85:1 (2015), 57–64.
Devaraj, A., Megahed, M., Liu, Y., Ramachandran, A., Anand, T., A switched capacitor multiple input single output energy harvester (solar+ piezo) achieving 74.6% efficiency with simultaneous MPPT. IEEE Trans. Circuits Syst. I. Regul. Pap. 66:12 (2019), 4876–4887.
Dian, F.J., Vahidnia, R., Rahmati, A., Wearables and the Internet of Things (IoT), applications, opportunities, and challenges: A survey. IEEE Access 8 (2020), 69200–69211.
Digregorio, G., Pierre, H., Laurent, P., Redouté, J.-M., Modeling and experimental characterization of an electromagnetic energy harvester for wearable and biomedical applications. IEEE Access 8 (2020), 175436–175447.
Ding, Z., Zhong, C., Ng, D.W.K., Peng, M., Suraweera, H.A., Schober, R., Poor, H.V., Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag. 53:4 (2015), 86–93.
Divakaran, S.K., Krishna, D.D., RF energy harvesting systems: An overview and design issues. Int. J. RF Microw. Comput. Aided Eng., 29(1), 2019, e21633.
Divakaran, S.K., Krishna, D.D., et al. An overview of compact antennas for RF energy harvesting. 2017 IEEE International WIE Conference on Electrical and Computer Engineering, WIECON-ECE, 2017, IEEE, 47–50.
Divya, S., Panda, S., Hajra, S., Jeyaraj, R., Paul, A., Park, S.H., Kim, H.J., Oh, T.H., Smart data processing for energy harvesting systems using artificial intelligence. Nano Energy, 106, 2023, 108084.
Duhovnikov, S., Baltaci, A., Gera, D., Schupke, D.A., Power consumption analysis of NB-IoT technology for low-power aircraft applications. 2019 IEEE 5th World Forum on Internet of Things, WF-IoT, 2019, IEEE, 719–723.
E-peas, S., What applications do we work with. 2022 URL: https://e-peas.com/application/. E.
Elahi, H., Munir, K., Eugeni, M., Atek, S., Gaudenzi, P., Energy harvesting towards self-powered IoT devices. Energies, 13(21), 2020, 5528.
Elhaddad, A., Bruckmeyer, H., Hertlein, M., Fischer, G., Energy consumption evaluation of cellular narrowband Internet of Things (NB-IoT) modules. 2020 IEEE 6th World Forum on Internet of Things, WF-IoT, 2020, IEEE, 1–5.
Elhebeary, M.R., Ibrahim, M.A., Aboudina, M.M., Mohieldin, A.N., Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT. IEEE Trans. Ind. Electron. 65:1 (2017), 342–351.
Eltresy, N.A., Dardeer, O.M., Al-Habal, A., Elhariri, E., Hassan, A.H., Khattab, A., Elsheakh, D.N., Taie, S.A., Mostafa, H., Elsadek, H.A., et al. RF energy harvesting IoT system for museum ambience control with deep learning. Sensors, 19(20), 2019, 4465.
Elvin, N.G., Elvin, A.A., An experimentally validated electromagnetic energy harvester. J. Sound Vib. 330:10 (2011), 2314–2324.
Erdem, H.E., Gungor, V.C., On the lifetime analysis of energy harvesting sensor nodes in smart grid environments. Ad Hoc Netw. 75 (2018), 98–105.
Esmailzadeh, R., Nakagawa, M., Sourour, E.A., Time-division duplex CDMA communications. IEEE Pers. Commun. 4:2 (1997), 51–56.
Estrada-López, J.J., Abuellil, A., Costilla-Reyes, A., Abouzied, M., Yoon, S., Sánchez-Sinencio, E., A fully integrated maximum power tracking combiner for energy harvesting IoT applications. IEEE Trans. Ind. Electron. 67:4 (2019), 2744–2754.
Estrada-López, J.J., Abuellil, A., Zeng, Z., Sánchez-Sinencio, E., Multiple input energy harvesting systems for autonomous IoT end-nodes. J. Low Power Electron. Appl., 8(1), 2018, 6.
Falis, K., Tsiougkos, A., Pavlidis, V.F., Practical day-ahead power prediction of solar energy-harvesting for IoT systems. 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration, VLSI-SoC, 2022, IEEE, 1–6.
Fan, X., Ding, H., Li, S., Sanzari, M., Zhang, Y., Trappe, W., Han, Z., Howard, R.E., Energy-ball: Wireless power transfer for batteryless internet of things through distributed beamforming. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 2:2 (2018), 1–22.
Fang, X., Feng, W., Wei, T., Chen, Y., Ge, N., Wang, C.-X., 5G embraces satellites for 6G ubiquitous IoT: Basic models for integrated satellite terrestrial networks. IEEE Internet Things J. 8:18 (2021), 14399–14417.
Fang, Y., Tao, Y., Ma, H., Li, Y., Guizani, M., Design of a reconfigurable intelligent surface-assisted FM-DCSK-SWIPT scheme with non-linear energy harvesting model. IEEE Trans. Commun. 71:4 (2023), 1863–1877.
Ferdouse, L., Woungang, I., Anpalagan, A., Erkucuk, S., Energy efficient downlink resource allocation in cellular IoT supported H-CRANs. IEEE Trans. Veh. Technol. 70:6 (2021), 5803–5816.
Fraternali, F., Balaji, B., Agarwal, Y., Gupta, R.K., Aces: Automatic configuration of energy harvesting sensors with reinforcement learning. ACM Trans. Sensor Netw. 16:4 (2020), 1–31.
Gao, H., Matters-Kammerer, M.K., Harpe, P., Milosevic, D., Johannsen, U., van Roermund, A., Baltus, P., A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS. 2013 IEEE Radio Frequency Integrated Circuits Symposium, RFIC, 2013, IEEE, 403–406.
Gao, H., Matters-Kammerer, M.K., Harpe, P., Milosevic, D., van Roermund, A., Linnartz, J.-P., Baltus, P.G., A 60-GHz energy harvesting module with on-chip antenna and switch for co-integration with ULP radios in 65-nm CMOS with fully wireless mm-wave power transfer measurement. 2014 IEEE International Symposium on Circuits and Systems, ISCAS, 2014, IEEE, 1640–1643.
Gao, H., Matters-Kammerer, M.K., Milosevic, D., van Roermund, A., Baltus, P., A 62 GHz inductor-peaked rectifier with 7% efficiency. 2013 IEEE Radio Frequency Integrated Circuits Symposium, RFIC, 2013, IEEE, 189–192.
Garg, N., Garg, R., Energy harvesting in IoT devices: A survey. 2017 International Conference on Intelligent Sustainable Systems, ICISS, 2017, IEEE, 127–131.
Gautam, S., Lagunas, E., Bandi, A., Chatzinotas, S., Sharma, S.K., Vu, T.X., Kisseleff, S., Ottersten, B., Multigroup multicast precoding for energy optimization in swipt systems with heterogeneous users. IEEE Open J. Commun. Soc. 1 (2019), 92–108.
Georgiadis, A., Collado, A., Tentzeris, M.M., Energy Harvesting: Technologies, Systems, and Challenges. 2021, Cambridge University Press.
Gong, P., Chen, T.M., Xu, P., Chen, Q., DS-SWIPT: Secure communication with wireless power transfer for Internet of Things. Secur. Commun. Netw., 2022, 2022.
Guo, Y.J., Ansari, M., Fonseca, N.J., Circuit type multiple beamforming networks for antenna arrays in 5G and 6G terrestrial and non-terrestrial networks. IEEE J. Microw. 1:3 (2021), 704–722.
Guo, Y., Xiang, M., Multi-agent reinforcement learning based energy efficiency optimization in NB-IoT networks. 2019 IEEE Globecom Workshops, GC Wkshps, 2019, IEEE, 1–6.
Guo, F., Yu, F.R., Zhang, H., Li, X., Ji, H., Leung, V.C., Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet Things J. 8:15 (2021), 11891–11915.
Gupta, R., Krikidis, I., Simultaneous wireless power transfer and modulation classification. 2021 IEEE 93rd Vehicular Technology Conference, VTC2021-Spring, 2021, IEEE, 1–6.
Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., Studer, C., Pärssinen, A., Correia, R., Matos, J.N., et al. Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE J. Microw. 1:1 (2021), 86–100.
Hafeez, M.T., Jilani, S.F., Novel millimeter-wave flexible antenna for RF energy harvesting. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, IEEE, 2497–2498.
Halim, M.A., Cho, H., Park, J.Y., Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manage. 106 (2015), 393–404.
Han, M., Duan, J., Khairy, S., Cai, L.X., Enabling sustainable underwater IoT networks with energy harvesting: a decentralized reinforcement learning approach. IEEE Internet Things J. 7:10 (2020), 9953–9964.
Hannachi, C., Boumaiza, S., Tatu, S.O., A highly sensitive broadband rectenna for low power millimeter-wave energy harvesting applications. 2018 IEEE Wireless Power Transfer Conference, WPTC, 2018, IEEE, 1–4.
Hao, W., Sun, G., Zhou, F., Mi, D., Shi, J., Xiao, P., Leung, V.C., Energy-efficient hybrid precoding design for integrated multicast-unicast millimeter wave communications with SWIPT. IEEE Trans. Veh. Technol. 68:11 (2019), 10956–10968.
Haque, T., 2019a. Air-interfaces for ultra-low power communications – challenges, solutions and potential benefits. URL: http://www.6gsummit.com/6g-summit-2019-archive/.
Haque, T., 2019b. Air-interfaces for ultra-low power communications – challenges, solutions and potential benefits. URL: http://www.6gsummit.com/wp-content/uploads/2019/04/Day3_Session3_Haque_Interdigital.pdf.
Haque, T., Elkotby, H., Cabrol, P., Pragada, R., Castor, D., A supplemental zero-energy downlink air-interface enabling 40-year battery life in IoT devices. GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, IEEE, 1–6.
Haridas, A., Rao, V.S., Prasad, R.V., Sarkar, C., Opportunities and challenges in using energy-harvesting for NB-IoT. ACM SIGBED Rev. 15:5 (2018), 7–13.
Hassouna, S., Jamshed, M.A., Rains, J., Kazim, J.u.R., Rehman, M.U., Abualhayja, M., Mohjazi, L., Cui, T.J., Imran, M.A., Abbasi, Q.H., A survey on reconfigurable intelligent surfaces: Wireless communication perspective. IET Commun. 17:5 (2023), 497–537.
Hattab, G., Cabric, D., Energy-efficient massive IoT shared spectrum access over UAV-enabled cellular networks. IEEE Trans. Commun. 68:9 (2020), 5633–5648.
Hayes, D.K., Low-Power LTE-M Based Remote Monitoring of Propane Tank Fill Levels Using Asynchronous Embedded Rust Firmware. (Ph.D. thesis), 2022, The University of North Carolina at Charlotte.
Henrique, P.S.R., Prasad, R., 6G: The Road to the Future Wireless Technologies 2030. 2022, CRC Press.
Hester, J., Sorber, J., 2017. The future of sensing is batteryless, intermittent, and awesome. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. pp. 1–6.
Higashino, T., Uchiyama, A., Saruwatari, S., Yamaguchi, H., Watanabe, T., Context recognition of humans and objects by distributed zero-energy IoT devices. 2019 IEEE 39th International Conference on Distributed Computing Systems, ICDCS, 2019, IEEE, 1787–1796.
Ho, S.L., Wang, J., Fu, W., Sun, M., A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Trans. Magn. 47:5 (2011), 1522–1525.
Hoglund, A., Bergman, J., Lin, X., Liberg, O., Ratilainen, A., Razaghi, H.S., Tirronen, T., Yavuz, E.A., Overview of 3GPP release 14 further enhanced MTC. IEEE Commun. Stand. Mag. 2:2 (2018), 84–89.
Hoglund, A., Medina-Acosta, G.A., Veedu, S.N.K., Liberg, O., Tirronen, T., Yavuz, E.A., Bergman, J., 3GPP release-16 preconfigured uplink resources for LTE-M and NB-IoT. IEEE Commun. Stand. Mag. 4:2 (2020), 50–56.
Hoglund, A., Van, D.P., Tirronen, T., Liberg, O., Sui, Y., Yavuz, E.A., 3GPP release 15 early data transmission. IEEE Commun. Stand. Mag. 2:2 (2018), 90–96.
Hossain, M.A., Noor, R.M., Yau, K.-L.A., Ahmedy, I., Anjum, S.S., A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges. IEEE Access 7 (2019), 19166–19198.
Hsu, T.-W., Wu, H.-H., Tsai, D.-L., Wei, C.-L., Photovoltaic energy harvester with fractional open-circuit voltage based maximum power point tracking circuit. IEEE Trans. Circuits Syst. II 66:2 (2018), 257–261.
Hsueh, F.-K., Shen, C.-H., Shieh, J.-M., Li, K.-S., Chen, H.-C., Huang, W.-H., Wang, H.-H., Yang, C.-C., Hsieh, T.-Y., Lin, C.-H., et al. First fully functionalized monolithic 3D+ IoT chip with 0.5 V light-electricity power management, 6.8 GHz wireless-communication VCO, and 4-layer vertical ReRAM. 2016 IEEE International Electron Devices Meeting, IEDM, 2016, IEEE, 2–3.
Hu, J., Wang, Q., Yang, K., Energy self-sustainability in full-spectrum 6G. IEEE Wirel. Commun. 28:1 (2020), 104–111.
Huang, J., Xing, C.-C., Wang, C., Simultaneous wireless information and power transfer: Technologies, applications, and research challenges. IEEE Commun. Mag. 55:11 (2017), 26–32.
Huesgen, T., Ruhhammer, J., Biancuzzi, G., Woias, P., Detailed study of a micro heat engine for thermal energy harvesting. J. Micromech. Microeng., 20(10), 2010, 104004.
Hung, P.D., Park, Y., Kweon, S.-J., Lee, T., Jeon, H., Koh, S.-T., Cho, I., Yoon, J.-B., Park, I., Kim, C., et al. A self-powered wireless gas sensor node based on photovoltaic energy harvesting. 2021 Symposium on VLSI Circuits, 2021, IEEE, 1–2.
Hung, P.D., Shin, H., Park, Y., Hoang, N.K., Cho, D., Ha, S., Kim, C., Je, M., A 96.5%-power-efficiency hybrid buck-boost photovoltaic energy harvester employing adaptive FOCV MPPT control for >98% MPPT efficiency across a 10,000× dynamic range. 2022 IEEE Symposium on VLSI Technology and Circuits, VLSI Technology and Circuits, 2022, IEEE, 200–201.
Hussain, F., Hassan, S.A., Hussain, R., Hossain, E., Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenges. IEEE Commun. Surv. Tutorials 22:2 (2020), 1251–1275.
Ibrahim, H.H., Singh, M.J., Al-Bawri, S.S., Ibrahim, S.K., Islam, M.T., Alzamil, A., Islam, M.S., Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors, 22(11), 2022, 4144.
Islam, S., Budati, A.K., Hasan, M.K., Goyal, S., Khanna, A., Performance analysis of video data transmission for telemedicine applications with 5G enabled Internet of Things. Comput. Electr. Eng., 108, 2023, 108712.
Ismail, N.L., Kassim, M., Ismail, M., Mohamad, R., A review of low power wide area technology in licensed and unlicensed spectrum for IoT use cases. Bull. Electr. Eng. Inform. 7:2 (2018), 183–190.
Izidoro, C., Junior, O.A., Carmo, J., Schaeffer, L., Characterization of thermoelectric generator for energy harvesting. Measurement 106 (2017), 283–290.
Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., Melodia, T., Machine learning for wireless communications in the Internet of Things: A comprehensive survey. Ad Hoc Netw., 93, 2019, 101913.
Janakieska, M., Latkoski, P., Atanasovski, V., Signaling in 4G/5G with NB-IoT support in 5G option 3. 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST, 2020, IEEE, 54–57.
Jiang, N., Deng, Y., Nallanathan, A., Chambers, J.A., Reinforcement learning for real-time optimization in NB-IoT networks. IEEE J. Sel. Areas Commun. 37:6 (2019), 1424–1440.
Jiang, W., Han, B., Habibi, M.A., Schotten, H.D., The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2 (2021), 334–366.
Jo, S., Kim, M., Kim, M., Kim, Y., Flexible thermoelectric generator for human body heat energy harvesting. Electron. Lett. 48:16 (2012), 1015–1017.
Joris, L., Dupont, F., Laurent, P., Bellier, P., Stoukatch, S., Redouté, J.-M., An autonomous sigfox wireless sensor node for environmental monitoring. IEEE Sens. Lett. 3:7 (2019), 01–04.
Jörke, P., Gebauer, T., Böcker, S., Wietfeld, C., Scaling dense NB-IoT networks to the max: Performance benefits of early data transmission. 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), 2022, IEEE, 1–7.
Jörke, P., Gebauer, T., Wietfeld, C., 2022b. From LENA to LENA-NB: Implementation and Performance Evaluation of NB-IoT and Early Data Transmission in ns-3. In: Proceedings of the 2022 Workshop on Ns-3. pp. 73–80.
Kaiser, M.S., Zenia, N., Tabassum, F., Mamun, S.A., Rahman, M.A., Islam, M., Mahmud, M., et al. 6G access network for intelligent internet of healthcare things: opportunity, challenges, and research directions. Proceedings of the International Conference on Trends in Computational and Cognitive Engineering, 2021, Springer, 317–328.
Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C., Guan, Y.L., Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53:6 (2015), 102–108.
Kanj, M., Savaux, V., Le Guen, M., A tutorial on NB-IoT physical layer design. IEEE Commun. Surv. Tutor. 22:4 (2020), 2408–2446.
Kapetanovic, Z., Morales, M., Smith, J.R., Communication by means of modulated johnson noise. Proc. Natl. Acad. Sci., 119(49), 2022, e2201337119.
Karami, N., Tessier-Poirier, A., Nikkhah, A., Léveillé, E., Monin, T., Formosa, F., Fréchette, L., Experimental characterization of the thermodynamic cycle of a self-oscillating fluidic heat engine (SOFHE) for thermal energy harvesting. Energy Convers. Manage., 258, 2022, 115548.
Kawar, S., Krishnan, S., Abugharbieh, K., An input power-aware efficiency tracking technique with discontinuous charging for energy harvesting applications. IEEE Access 8 (2020), 135195–135207.
Khan, T.A., Alkhateeb, A., Heath, R.W., Energy coverage in millimeter wave energy harvesting networks. 2015 IEEE Globecom Workshops, GC Wkshps, 2015, IEEE, 1–6.
Khan, T.A., Alkhateeb, A., Heath, R.W., Millimeter wave energy harvesting. IEEE Trans. Wireless Commun. 15:9 (2016), 6048–6062.
Khan, F.U., Qadir, M.U., State-of-the-art in vibration-based electrostatic energy harvesting. J. Micromech. Microeng., 26(10), 2016, 103001.
Khan, L.U., Yaqoob, I., Imran, M., Han, Z., Hong, C.S., 6G wireless systems: A vision, architectural elements, and future directions. IEEE Access 8 (2020), 147029–147044.
Kim, J.H., 6G and Internet of Things: a survey. J. Manage. Anal. 8:2 (2021), 316–332.
Kim, J., Clerckx, B., Wireless information and power transfer for IoT: Pulse position modulation, integrated receiver, and experimental validation. IEEE Internet Things J., 2021.
Kim, J., Clerckx, B., Mitcheson, P.D., Experimental analysis of harvested energy and throughput trade-off in a realistic SWIPT system. 2019 IEEE Wireless Power Transfer Conference, WPTC, 2019, IEEE, 1–5.
Kim, J.-s., Jung, W.-j., Hong, N.-p., Lee, J.-h., Nam, K.-h., Jang, P., A beamforming based wireless energy transmitter and energy harvester for IoT/M2M applications. 2018 International Conference on Information and Communication Technology Convergence, ICTC, 2018, IEEE, 1019–1023.
Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K., Schober, R., Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52:11 (2014), 104–110.
Ku, M.-L., Li, W., Chen, Y., Liu, K.R., Advances in energy harvesting communications: Past, present, and future challenges. IEEE Commun. Surv. Tutor. 18:2 (2015), 1384–1412.
Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M., Wireless power transfer via strongly coupled magnetic resonances. Science 317:5834 (2007), 83–86.
La Rosa, R., Livreri, P., Trigona, C., Di Donato, L., Sorbello, G., Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer. Sensors, 19(12), 2019, 2660.
Ladan, S., Guntupalli, A.B., Wu, K., A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE Trans. Circuits Syst. I. Regul. Pap. 61:12 (2014), 3358–3366.
Ladan, S., Hemour, S., Wu, K., Towards millimeter-wave high-efficiency rectification for wireless energy harvesting. 2013 IEEE International Wireless Symposium, IWS, 2013, IEEE, 1–4.
Ladan, S., Wu, K., Nonlinear modeling and harmonic recycling of millimeter-wave rectifier circuit. IEEE Trans. Microw. Theory Tech. 63:3 (2015), 937–944.
Laurent, P., Fagnard, J.-F., Dupont, F., Redouté, J.-M., Optimization of the power flow generated by an AC energy harvester for variable operating conditions. IEEE Trans. Circuits Syst. I. Regul. Pap. 69:6 (2022), 2625–2636.
Lazaro, A., Villarino, R., Girbau, D., A survey of NFC sensors based on energy harvesting for IoT applications. Sensors, 18(11), 2018, 3746.
Le, T., Mayaram, K., Fiez, T., Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 43:5 (2008), 1287–1302.
Lechêne, B.P., Cowell, M., Pierre, A., Evans, J.W., Wright, P.K., Arias, A.C., Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 26 (2016), 631–640.
Lee, H.G., Chang, N., Powering the IoT: Storage-less and converter-less energy harvesting. The 20th Asia and South Pacific Design Automation Conference, 2015, IEEE, 124–129.
Lee, J., Han, J., Lo, C.-L., Lee, J., Kim, W., Kim, S., Kang, B., Han, J., Jung, S., Nomiyama, T., et al. NB-IoT and GNSS all-in-one system-on-chip integrating RF transceiver, 23-dBm CMOS power amplifier, power management unit, and clock management system for low cost solution. IEEE J. Solid-State Circuits 55:12 (2020), 3400–3413.
Lee, J., Lee, J., Prediction-based energy saving mechanism in 3GPP NB-IoT networks. Sensors, 17(9), 2017, 2008.
Lee, H., Song, C., Choi, S.-H., Lee, I., Outage probability analysis and power splitter designs for SWIPT relaying systems with direct link. IEEE Commun. Lett. 21:3 (2016), 648–651.
Levitt, B.B., Lai, H.C., Manville, A.M., Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Rev. Environ. Health 37:1 (2022), 81–122.
Li, T., Mazaheri, M.H., Kamalakannan, K., Lu, H., Abari, O., 2024a. Can IoT Devices be Powered up by Future Indoor Wireless Networks?. In: Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications. pp. 73–78.
Li, J., Seo, J.-s., Kymissis, I., Seok, M., Triple-mode, hybrid-storage, energy harvesting power management unit: Achieving high efficiency against harvesting and load power variabilities. IEEE J. Solid-State Circuits 52:10 (2017), 2550–2562.
Li, Q., Yang, L., Robust optimization for energy efficiency in MIMO two-way relay networks with SWIPT. IEEE Syst. J. 14:1 (2019), 196–207.
Li, X., Zheng, H., He, C., Tian, X., Lin, X., Robust beamforming design for energy harvesting efficiency maximization in RIS-aided SWIPT system. Digit. Commun. Netw., 2024.
Liang, Q., Durrani, T.S., Liang, J., Koh, J., Wang, X., Guest editorial special issue on 6G-enabled Internet of Things. IEEE Internet Things J. 8:20 (2021), 15037–15040.
Liberg, O., Sundberg, M., Wang, E., Bergman, J., Sachs, J., Cellular Internet of Things: Technologies, Standards, and Performance. 2017, Academic Press.
Liberg, O., Sundberg, M., Wang, E., Bergman, J., Sachs, J., Wikström, G., Cellular Internet of Things: From Massive Deployments to Critical 5G Applications. 2019, Academic Press.
Lin, T., Pan, Y., Chen, S., Zuo, L., Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting. Appl. Energy 213 (2018), 219–226.
Liu, X., Ding, H., Hu, S., Uplink resource allocation for NOMA-based hybrid spectrum access in 6G-enabled cognitive Internet of Things. IEEE Internet Things J. 8:20 (2020), 15049–15058.
Liu, L., Li, S., Wei, M., Xu, J., Yu, B., Joint beam-forming optimization for active-RIS-assisted internet-of-things networks with SWIPT. Future Internet, 16(1), 2024, 20.
Liu, X., Ravichandran, K., Sánchez-Sinencio, E., A switched capacitor energy harvester based on a single-cycle criterion for MPPT to eliminate storage capacitor. IEEE Trans. Circuits Syst. I. Regul. Pap. 65:2 (2017), 793–803.
Liu, C.-H., Shen, Y.-H., Lee, C.-H., Energy-efficient activation and uplink transmission for cellular IoT. IEEE Internet Things J. 7:2 (2019), 906–921.
Lu, F., Lee, H., Lim, S., Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct., 13(1), 2003, 57.
Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z., Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 17:2 (2014), 757–789.
Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., Letaief, K.B., Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model. IEEE J. Sel. Areas Commun. 37:1 (2018), 216–232.
Lu, Y., Xiong, K., Fan, P., Zhong, Z., Letaief, K.B., Coordinated beamforming with artificial noise for secure SWIPT under non-linear EH model: Centralized and distributed designs. IEEE J. Sel. Areas Commun. 36:7 (2018), 1544–1563.
Lu, Y., Xiong, K., Fan, P., Zhong, Z., Letaief, K.B., Robust transmit beamforming with artificial redundant signals for secure SWIPT system under non-linear EH model. IEEE Trans. Wireless Commun. 17:4 (2018), 2218–2232.
Lucia, B., Balaji, V., Colin, A., Maeng, K., Ruppel, E., Intermittent computing: Challenges and opportunities. 2nd Summit on Advances in Programming Languages, SNAPL 2017, 2017, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Lunt, R.R., Bulovic, V., Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett., 98(11), 2011, 61.
Luo, P., Peng, D., Wang, Y., Zheng, X., Review of solar energy harvesting for IoT applications. 2018 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS, 2018, IEEE, 512–515.
Ma, D., Lan, G., Hassan, M., Hu, W., Das, S.K., Sensing, computing, and communications for energy harvesting IoTs: A survey. IEEE Commun. Surv. Tutor. 22:2 (2019), 1222–1250.
Mahmood, M.R., Matin, M.A., Sarigiannidis, P., Goudos, S.K., A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access 10 (2022), 87535–87562.
Mao, S., Leng, S., Hu, J., Yang, K., Power minimization resource allocation for underlay MISO-NOMA SWIPT systems. IEEE Access 7 (2019), 17247–17255.
Marzencki, M., Basrour, S., Charlot, B., Grasso, A., Colin, M., Valbin, L., 2005. Design and fabrication of piezoelectric micro power generators for autonomous microsystems. In: Proc. of DTIP’05. pp. 299–302.
Masotti, D., Shanawani, M., Murtaza, G., Paolini, G., Costanzo, A., RF systems design for simultaneous wireless information and power transfer (SWIPT) in automation and transportation. IEEE J. Microw. 1:1 (2021), 164–175.
Mavaddat, A., Armaki, S.H.M., Erfanian, A.R., Millimeter-wave energy harvesting using 4 x 4 microstrip patch antenna array. IEEE Antennas Wireless Propag. Lett. 14 (2014), 515–518.
Meng, X., Nekovee, M., Wu, D., The design and analysis of electronically reconfigurable liquid crystal-based reflectarray metasurface for 6G beamforming, beamsteering, and beamsplitting. IEEE Access 9 (2021), 155564–155575.
Michalopoulos, D.S., Suraweera, H.A., Schober, R., Simultaneous information transmission and wireless energy transfer via selecting one out of two relays. 2014 6th International Symposium on Communications, Control and Signal Processing, ISCCSP, 2014, IEEE, 318–321.
Migabo, E., Djouani, K., Kurien, A., A modelling approach for the narrowband IoT (NB-IoT) physical (PHY) layer performance. IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, 2018, IEEE, 5207–5214.
Mikeka, C., Arai, H., Design issues in radio frequency energy harvesting system. Sustainable Energy Harvesting Technologies-Past, Present and Future, 2011, InTech Europe, 235–256.
Minazara, E., Vasic, D., Costa, F., 2008. Piezoelectric generator harvesting bike vibrations energy to supply portable devices. In: Proceedings of International Conference on Renewable Energies and Power Quality. ICREPQ’08.
Moges, T.H., Lakew, D.S., Nguyen, N.P., Dao, N.-N., Cho, S., Cellular Internet of Things: Use cases, technologies, and future work. Internet Things, 2023, 100910.
Moloudian, G., Hosseinifard, M., Kumar, S., Simorangkir, R.B., Buckley, J.L., Song, C., Fantoni, G., O'Flynn, B., RF energy harvesting techniques for battery-less wireless sensing, industry 4.0 and Internet of Things: A review. IEEE Sens. J., 2024.
Mostafa, A.E., Wong, V.W., Transmit or backscatter: Communication mode selection for narrowband IoT systems. IEEE Trans. Veh. Technol. 71:5 (2022), 5477–5491.
Mouapi, A., Radiofrequency energy harvesting systems for Internet of Things applications: A comprehensive overview of design issues. Sensors, 22(21), 2022, 8088.
Muhammad, N.A., Seman, N., Apandi, N.I.A., Li, Y., Energy harvesting in sub-6 GHz and millimeter wave hybrid networks. IEEE Trans. Veh. Technol. 70:5 (2021), 4471–4484.
Muratkar, T.S., Bhurane, A., Kothari, A., Battery-less internet of things–A survey. Comput. Netw., 180, 2020, 107385.
Nagashima, T., Wei, X., Bou, E., Alarcón, E., Kazimierczuk, M.K., Sekiya, H., Analysis and design of loosely inductive coupled wireless power transfer system based on class DC-DC converter for efficiency enhancement. IEEE Trans. Circuits Syst. I. Regul. Pap. 62:11 (2015), 2781–2791.
Nannepaga, B., Varadarajan, S., Input impedance analysis of rectifier for RF energy harvesting applications. 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems, ICAECIS, 2023, IEEE, 558–562.
Nariman, M., Shirinfar, F., Pamarti, S., Rofougaran, A., De Flaviis, F., High-efficiency millimeter-wave energy-harvesting systems with milliwatt-level output power. IEEE Trans. Circuits Syst. II 64:6 (2016), 605–609.
Naser, S., Bariah, L., Basar, E., et al. Zero-Energy Devices Empowered 6G Networks: Opportunities, Key Technologies, and Challenges. 2022, Khalifa University.
Naser, S., Bariah, L., Muhaidat, S., Basar, E., Zero-energy devices empowered 6G networks: Opportunities, key technologies, and challenges. IEEE Internet Things Mag. 6:3 (2023), 44–50.
Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A., Throughput and ergodic capacity of wireless energy harvesting based df relaying network. 2014 IEEE International Conference on Communications, ICC, 2014, IEEE, 4066–4071.
Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D., Dobre, O., Poor, H.V., 6G Internet of Things: A comprehensive survey. IEEE Internet Things J. 9:1 (2021), 359–383.
Nguyen, H.Q., Le, M.T., Multiband ambient RF energy harvester with high gain wideband circularly polarized antenna toward self-powered wireless sensors. Sensors, 21(21), 2021, 7411.
Nowak, M., Metamaterial-based sub-microwave electromagnetic field energy harvesting system. Energies, 14(12), 2021, 3370.
Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M.H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F.M., Mohaddes, F., et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy, 258, 2020, 114069.
O'Connor, B., Pipe, K.P., Shtein, M., Fiber based organic photovoltaic devices. Appl. Phys. Lett., 92(19), 2008, 172.
Olzhabay, Y., Ng, A., Ukaegbu, I.A., Perovskite PV energy harvesting system for uninterrupted IoT device applications. Energies, 14(23), 2021, 7946.
Omidvar, F., Salmani, V., Rasti, M., A contention resolution scheme for energy efficiency of M2M traffic in LTE networks. 2018 9th International Symposium on Telecommunications, IST, 2018, IEEE, 281–285.
Ouaissa, M., Ouaissa, M., Boulouard, Z., El Himer, S., Khan, I.U., 2024. Low-power wide area network for large-scale IoT: Fundamentals, technologies, and challenges. In: Low-Power Wide Area Network for Large Scale Internet of Things, CRC Press. pp. 1–14.
Palarimath, S., Pyingkodi, M., Thenmozhi, K., Maqsood, M., Salam, M.A., Palarimath, R.D., Powering IoT systems with 5g wireless communication: A comprehensive review. 2023 8th International Conference on Communication and Electronics Systems, ICCES, 2023, IEEE, 420–424.
Panigrahi, B.K., Ahmed, R., Mehmood, M.U., Park, J.C., Kim, Y., Chun, W., et al. Operation of a low-temperature differential heat engine for power generation via hybrid nanogenerators. Appl. Energy, 285, 2021, 116385.
Park, J., Joshi, H., Lee, H.G., Kiaei, S., Ogras, U.Y., Flexible PV-cell modeling for energy harvesting in wearable IoT applications. ACM Trans. Embedded Comput. Syst. (TECS) 16:5s (2017), 1–20.
Pataki, N., Rossi, P., Caironi, M., Solution processed organic thermoelectric generators as energy harvesters for the Internet of Things. Appl. Phys. Lett., 121(23), 2022, 230501.
Pavone, D., Buonanno, A., D'Urso, M., Della Corte, F., Design considerations for radio frequency energy harvesting devices. Prog. Electromagn. Res. B 45 (2012), 19–35.
Pedersen, K.I., Berardinelli, G., Frederiksen, F., Mogensen, P., Szufarska, A., A flexible 5G frame structure design for frequency-division duplex cases. IEEE Commun. Mag. 54:3 (2016), 53–59.
Pellerano, S., Alvarado, J., Palaskas, Y., A mm-wave power-harvesting RFID tag in 90 nm CMOS. IEEE J. Solid-State Circuits 45:8 (2010), 1627–1637.
Peng, X., Wu, P., Tan, H., Xia, M., Optimization for IRS-assisted MIMO-OFDM SWIPT system with nonlinear EH model. IEEE Internet Things J. 9:24 (2022), 25253–25268.
Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J., Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Commun. Surv. Tutor. 20:1 (2017), 264–302.
Peruzzi, G., Pozzebon, A., A review of energy harvesting techniques for low Power Wide Area networks (LPWANs). Energies, 13(13), 2020, 3433.
Piñuela, M., Mitcheson, P.D., Lucyszyn, S., Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 61:7 (2013), 2715–2726.
Piovano, L., Santamaria, A., Guidelines and criteria for selecting the optimal low-power wide-area network technology. LPWAN Technologies for IoT and M2M Applications, 2020, Academic Press, 281.
Popli, S., Jha, R.K., Jain, S., A survey on energy efficient narrowband Internet of Things (NB-IoT): architecture, application and challenges. IEEE Access 7 (2018), 16739–16776.
Prasad, A., Chawda, P., Power management factors and techniques for IoT design devices. 2018 19th International Symposium on Quality Electronic Design, ISQED, 2018, IEEE, 364–369.
Proto, A., Bibbo, D., Cerny, M., Vala, D., Kasik, V., Peter, L., Conforto, S., Schmid, M., Penhaker, M., Thermal energy harvesting on the bodily surfaces of arms and legs through a wearable thermo-electric generator. Sensors, 18(6), 2018, 1927.
Ram, S.K., Chourasia, S., Das, B.B., Swain, A.K., Mahapatra, K., Mohanty, S., A solar based power module for battery-less IoT sensors towards sustainable smart cities. 2020 IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2020, IEEE, 458–463.
Rao, J., Zhang, Y., Tang, S., Li, Z., Chiu, C.-Y., Murch, R., An active reconfigurable intelligent surface utilizing phase-reconfigurable reflection amplifiers. IEEE Trans. Microw. Theory Tech., 2023.
Rastogi, E., Kumar Maheshwari, M., Roy, A., Saxena, N., Ryeol Shin, D., Energy efficiency analysis of narrowband Internet of Things with auxiliary active cycles for small data transmission. Trans. Emerg. Telecommun. Technol., 33(1), 2022, e4376.
Rawy, K., Yoo, T., Kim, T.T.-H., An 88% efficiency 0.1–300-μW energy harvesting system with 3-D MPPT using switch width modulation for IoT smart nodes. IEEE J. Solid-State Circuits 53:10 (2018), 2751–2762.
Reininger, P., 2016. 3GPP Standards for the Internet-of-Things. In: IoT Business & Technologies Congress, Singapore, November. Vol. 30.
Renaud, M., Fiorini, P., van Schaijk, R., Van Hoof, C., Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct., 18(3), 2009, 035001.
Rezaei, F., Tellambura, C., Herath, S., Large-scale wireless-powered networks with backscatter communications—A comprehensive survey. IEEE Open J. Commun. Soc. 1 (2020), 1100–1130.
Rosabal, O.M., López, O.L.A., Alves, H., Montejo-Sánchez, S., Latva-Aho, M., On the optimal deployment of power beacons for massive wireless energy transfer. IEEE Internet Things J. 8:13 (2020), 10531–10542.
Roundy, S., Wright, P.K., A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct., 13(5), 2004, 1131.
Roy, D.S., A study on DRX mechanism for wireless powered LTE-enabled IoT devices. 2019 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW, 2019, IEEE, 1–2.
Ryu, H., Yoon, H.-J., Kim, S.-W., Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater., 31(34), 2019, 1802898.
Saadon, S., Sidek, O., A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manage. 52:1 (2011), 500–504.
Sah, D.K., Amgoth, T., Renewable energy harvesting schemes in wireless sensor networks: A survey. Inf. Fusion 63 (2020), 223–247.
Sainath, B., Estimation and analysis of maximum energy harvested in RF-EH wireless system over different fading channels. Wirel. Pers. Commun., 2024, 1–23.
Saini, G., Baghini, M.S., A generic power management circuit for energy harvesters with shared components between the MPPT and regulator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27:3 (2019), 535–548.
Samara, G., Aljaidi, M., Al Daoud, E., Al-Safarini, M.Y., Alsayyed, G.M., Almatarneh, S., Message broadcasting algorithm implementation using mobile long term evolution and narrow band Internet of Things over intelligent transportation system (ITS). 2022 International Arab Conference on Information Technology, ACIT, 2022, IEEE, 1–7.
Sample, A.P., Meyer, D.T., Smith, J.R., Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58:2 (2010), 544–554.
Selvan, K.V., Hasan, M.N., Mohamed Ali, M.S., Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators. Int. J. Energy Res. 43:1 (2019), 113–140.
Settaluri, K.T., Lo, H., Ram, R.J., Thin thermoelectric generator system for body energy harvesting. J. Electron. Mater. 41:6 (2012), 984–988.
Sezer, N., Koç, M., A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80, 2021, 105567.
Shah, S.W.H., Mian, A.N., Aijaz, A., Qadir, J., Crowcroft, J., Energy-efficient mac for cellular IoT: state-of-the-art, challenges, and standardization. IEEE Trans. Green Commun. Netw. 5:2 (2021), 587–599.
Shaikh, F.K., Zeadally, S., Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 55 (2016), 1041–1054.
Sharma, H., Haque, A., Jaffery, Z.A., Solar energy harvesting wireless sensor network nodes: A survey. J. Renew. Sustain. Energy, 10(2), 2018.
Sharma, P., Singh, A.K., A survey on RF energy harvesting techniques for lifetime enhancement of wireless sensor networks. Sustain. Comput. Inform. Syst., 37, 2023, 100836.
She, C., Sun, C., Gu, Z., Li, Y., Yang, C., Poor, H.V., Vucetic, B., A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning. Proc. IEEE 109:3 (2021), 204–246.
Sherazi, H.H.R., Zorbas, D., O'Flynn, B., A comprehensive survey on RF energy harvesting: Applications and performance determinants. Sensors, 22(8), 2022, 2990.
Shinohara, N., Trends in wireless power transfer: WPT technology for energy harvesting, mllimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications. IEEE Microw. Mag. 22:1 (2020), 46–59.
Shirvanimoghaddam, M., Shirvanimoghaddam, K., Abolhasani, M.M., Farhangi, M., Barsari, V.Z., Liu, H., Dohler, M., Naebe, M., Towards a green and self-powered Internet of Things using piezoelectric energy harvesting. IEEE Access 7 (2019), 94533–94556.
Siddique, A.R.M., Mahmud, S., Van Heyst, B., A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manage. 106 (2015), 728–747.
Sil, I., Mukherjee, S., Biswas, K., A review of energy harvesting technology and its potential applications. Environ. Earth Sci. Res. J. 4:2 (2017), 33–38.
Siskos, S., Gogolou, V., Tsamis, C., Kerasidou, A., Doumenis, G., Tsiapali, K., Katsikas, S., Sakellariou, A., Design of a flexible multi-source energy harvesting system for autonomously powered IoT: The PERPS project. 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation, PATMOS, 2019, IEEE, 133–134.
Snyder, G.J., Thermoelectric energy harvesting. Energy Harvesting Technologies, 2009, Springer, 325–336.
Staniec, K., The cellular Internet of Things systems (CIoT). Radio Interfaces in the Internet of Things Systems, 2020, Springer, 151–178.
Sultania, A.K., Blondia, C., Famaey, J., Optimizing the energy-latency tradeoff in NB-IoT with PSM and eDRX. IEEE Internet Things J. 8:15 (2021), 12436–12454.
Sultania, A.K., Famaey, J., Batteryless NB-IoT prototype for bidirectional communication powered by ambient light. Ad Hoc Netw., 2023, 103100.
Sultania, A.K., Zand, P., Blondia, C., Famaey, J., Energy modeling and evaluation of NB-IoT with PSM and eDRX. 2018 IEEE Globecom Workshops (GC Wkshps), 2018, IEEE, 1–7.
Sun, Z., Wen, X., Wang, L., Yu, J., Qin, X., Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci., 2022.
Sun, H., Yin, M., Wei, W., Li, J., Wang, H., Jin, X., MEMS based energy harvesting for the Internet of Things: a survey. Microsyst. Technol. 24 (2018), 2853–2869.
Swianto, M.I.A., Akhand, S., Saif, N., Comparative Analysis of Different Methods for Reducing the Energy Consumption and Latency in NB-IoT Systems. (Bachelor's thesis), 2021, Department of Electrical and Electronic Engineering, Islamic University of Technology.
Tang, F., Mao, B., Kawamoto, Y., Kato, N., Survey on machine learning for intelligent end-to-end communication toward 6G: From network access, routing to traffic control and streaming adaption. IEEE Commun. Surv. Tutor. 23:3 (2021), 1578–1598.
Tang, X., Wang, X., Cattley, R., Gu, F., Ball, A.D., Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors, 18(12), 2018, 4113.
Tashiro, R., Kabei, N., Katayama, K., Ishizuka, Y., Tsuboi, F., Tsuchiya, K., Development of an electrostatic generator that harnesses the motion of a living body: use of a resonant phenomenon. JSME Int. J. Ser. C Mech. Syst. Mach. Elements Manuf. 43:4 (2000), 916–922.
Tavakkolnia, I., Jagadamma, L.K., Bian, R., Manousiadis, P.P., Videv, S., Turnbull, G.A., Samuel, I.D., Haas, H., Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Science Appl., 10(1), 2021, 41.
Tavana, M., RF Energy Harvesting for Zero-Energy Devices and Reconfigurable Intelligent Surfaces. (Ph.D. thesis), 2024, KTH Royal Institute of Technology.
Tavana, M., Björnson, E., Zander, J., Multi-site energy harvesting for battery-less internet-of-things devices: Prospects and limits. 2022 IEEE 96th Vehicular Technology Conference, VTC2022-Fall, 2022, IEEE, 1–6.
Tavana, M., Björnson, E., Zander, J., Range limits of energy harvesting from a base station for battery-less internet-of-things devices. ICC 2022-IEEE International Conference on Communications, 2022, IEEE, 153–158.
Tavana, M., Masoudi, M., Björnson, E., Energy harvesting maximization for reconfigurable intelligent surfaces using amplitude measurements. IEEE Trans. Commun., 2023.
Tentzeris, M.M., Eid, A., Lin, T.-H., Hester, J.G., Cui, Y., Adeyeye, A., Tehrani, B., Nauroze, S.A., Inkjet-/3D-/4D-printed nanotechnology-enabled radar, sensing, and RFID modules for Internet of Things,“smart skin,” and “zero power” medical applications. Antenna Sensor Technol. Modern Med. Appl., 2021, 399–434.
Thiagarajan, C., Samundiswary, P., A survey on energy efficient, harvesting & optimization approaches in IoT system. 2022 International Conference on Computing, Communication and Power Technology, IC3P, 2022, IEEE, 129–132.
Thien, H.T., Tuan, P.-V., Koo, I., Deep learning-based approach to fast power allocation in SISO SWIPT systems with a power-splitting scheme. Appl. Sci., 10(10), 2020, 3634.
Timoudas, T.O., Du, R., Fischione, C., Enabling massive IoT in ambient backscatter communication systems. ICC 2020-2020 IEEE International Conference on Communications, ICC, 2020, IEEE, 1–6.
Tran, L.-G., Cha, H.-K., Park, W.-T., RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5 (2017), 1–16.
Tran, H.-V., Kaddoum, G., Truong, K.T., Resource allocation in SWIPT networks under a nonlinear energy harvesting model: Power efficiency, user fairness, and channel nonreciprocity. IEEE Trans. Veh. Technol. 67:9 (2018), 8466–8480.
Tuan, P.V., Koo, I., Optimizing efficient energy transmission on a SWIPT interference channel under linear/nonlinear eh models. IEEE Syst. J. 14:1 (2019), 457–468.
Uwaechia, A.N., Mahyuddin, N.M., A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access 8 (2020), 62367–62414.
Valenta, C.R., Durgin, G.D., Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15:4 (2014), 108–120.
Van Schalkwyk, J., Hancke, G.P., Energy harvesting for wireless sensors from electromagnetic fields around overhead power lines. 2012 IEEE International Symposium on Industrial Electronics, 2012, IEEE, 1128–1135.
Varshney, L.R., Transporting information and energy simultaneously. 2008 IEEE International Symposium on Information Theory, 2008, IEEE, 1612–1616.
Vashishth, T.K., Sharma, V., Sharma, K.K., Kumar, B., Chaudhary, S., Panwar, R., Waste-to-energy solutions harnessing IoT and ML for sustainable power generation in smart cities. Methodologies, Frameworks, and Applications of Machine Learning, 2024, IGI Global, 125–146.
Vikhrova, O., Pizzi, S., Molinaro, A., Iera, A., Samouylov, K., Araniti, G., Group-based delivery of critical traffic in cellular IoT networks. Comput. Netw., 181, 2020, 107563.
Viswanathan, H., Mogensen, P.E., Communications in the 6G era. IEEE Access 8 (2020), 57063–57074.
Vu, H.S., Nguyen, N., Ha-Van, N., Seo, C., Le, M.T., Multiband ambient RF energy harvesting for autonomous IoT devices. IEEE Microw. Wirel. Compon. Lett. 30:12 (2020), 1189–1192.
Vu, Q.-D., Tran, L.-N., Farrell, R., Hong, E.-K., An efficiency maximization design for SWIPT. IEEE Signal Process. Lett. 22:12 (2015), 2189–2193.
Wagih, M., Weddell, A.S., Beeby, S., Millimeter-wave textile antenna for on-body RF energy harvesting in future 5G networks. 2019 IEEE Wireless Power Transfer Conference, WPTC, 2019, IEEE, 245–248.
Wan, S., Hu, J., Chen, C., Jolfaei, A., Mumtaz, S., Pei, Q., Fair-hierarchical scheduling for diversified services in space, air and ground for 6G-dense Internet of Things. IEEE Trans. Netw. Sci. Eng. 8:4 (2020), 2837–2848.
Wan, J., Li, J., Hua, Q., Celesti, A., Wang, Z., Intelligent equipment design assisted by cognitive Internet of Things and industrial big data. Neural Comput. Appl. 32:9 (2020), 4463–4472.
Wan, Q., Teh, Y.-K., Gao, Y., Mok, P.K., Analysis and design of a thermoelectric energy harvesting system with reconfigurable array of thermoelectric generators for IoT applications. IEEE Trans. Circuits Syst. I. Regul. Pap. 64:9 (2017), 2346–2358.
Wandre, S., EDGE: Enhanced data rates for GSM evolution. Illinois Inst. Technol., 1, 2000, 19.
Wang, L., Elkashlan, M., Heath, R.W., Di Renzo, M., Wong, K.-K., Millimeter wave power transfer and information transmission. 2015 IEEE Global Communications Conference, GLOBECOM, 2015, IEEE, 1–6.
Wang, H., Jasim, A., Chen, X., Energy harvesting technologies in roadway and bridge for different applications–A comprehensive review. Appl. Energy 212 (2018), 1083–1094.
Wang, J., Jiang, H., Location-based LTE-M uplink power control and radio resource scheduling. Sensors, 22(4), 2022, 1474.
Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., Demestichas, P., 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Veh. Technol. Mag. 9:3 (2014), 39–46.
Wang, K., Liu, P., Liu, K., Chen, L., Shin, H., Quek, T.Q., Joint beamforming and phase-shifting design for energy efficiency in RIS-assisted MISO communication with statistical CSI. Phys. Commun., 59, 2023, 102080.
Wang, Y., Liu, Y., Wang, C., Li, Z., Sheng, X., Lee, H.G., Chang, N., Yang, H., Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for Internet of Things. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35:2 (2015), 173–186.
Wang, Q., Xiao, Y., Zhu, H., Sun, Z., Li, Y., Ge, X., Towards energy-efficient federated edge intelligence for IoT networks. 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops, ICDCSW, 2021, IEEE, 55–62.
Wang, D., Zhong, D., Souri, A., Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cogn. Syst. Res. 67 (2021), 33–49.
Weissman, N., Jameson, S., Socher, E., W-band CMOS on-chip energy harvester and rectenna. 2014 IEEE MTT-S International Microwave Symposium, IMS2014, 2014, IEEE, 1–3.
Wheeldon, A., Shafik, R., Rahman, T., Lei, J., Yakovlev, A., Granmo, O.-C., Learning automata based energy-efficient AI hardware design for IoT applications. Philos. Trans. R. Soc. A, 378(2182), 2020, 20190593.
Williams, A.J., Torquato, M.F., Cameron, I.M., Fahmy, A.A., Sienz, J., Survey of energy harvesting technologies for wireless sensor networks. IEEE Access 9 (2021), 77493–77510.
Wu, C.K., Tsang, K.F., Liu, Y., Zhu, H., Wang, H., Wei, Y., Critical Internet of Things: An interworking solution to improve service reliability. IEEE Commun. Mag. 58:1 (2020), 74–79.
Xiong, K., Wang, B., Liu, K.R., Rate-energy region of SWIPT for MIMO broadcasting under nonlinear energy harvesting model. IEEE Trans. Wireless Commun. 16:8 (2017), 5147–5161.
Xu, P., Flandre, D., Bol, D., Analysis, modeling, and design of a 2.45-GHz RF energy harvester for SWIPT IoT smart sensors. IEEE J. Solid-State Circuits 54:10 (2019), 2717–2729.
Xu, Y., Gui, G., Gacanin, H., Adachi, F., A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Commun. Surv. Tutor. 23:2 (2021), 668–695.
Xu, K., Shen, Z., Zhang, M., Wang, Y., Xia, X., Xie, W., Zhang, D., Beam-domain SWIPT for mMIMO system with nonlinear energy harvesting legitimate terminals and a non-cooperative terminal. IEEE Trans. Green Commun. Netw. 3:3 (2019), 703–720.
Xu, K., Zhang, M., Liu, J., Sha, N., Xie, W., Chen, L., SWIPT in mMIMO system with non-linear energy-harvesting terminals: Protocol design and performance optimization. EURASIP J. Wireless Commun. Networking 2019:1 (2019), 1–15.
Yan, J., Liao, X., Yan, D., Chen, Y., Review of micro thermoelectric generator. J. Microelectromech. Syst. 27:1 (2018), 1–18.
Yang, C.-C., Pandey, R., Tu, T.-Y., Cheng, Y.-P., Chao, P.C.-P., An efficient energy harvesting circuit for batteryless IoT devices. Microsyst. Technol. 26 (2020), 195–207.
Yau, C.-W., Kwok, T.T.-O., Lei, C.-U., Kwok, Y.-K., Energy harvesting in internet of things. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, 2018, Springer, 35–79.
Yedavalli, P.S., Riihonen, T., Wang, X., Rabaey, J.M., Far-field RF wireless power transfer with blind adaptive beamforming for Internet of Things devices. IEEE Access 5 (2017), 1743–1752.
Yen, B.C., Lang, J.H., A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst. I. Regul. Pap. 53:2 (2006), 288–295.
Yu, X., Ai, T., Wang, K., Application of nanogenerators in acoustics based on artificial intelligence and machine learning. APL Mater., 12(2), 2024.
Yu, N., Ma, H., Wu, C., Yu, G., Yan, B., Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mech. Syst. Signal Process., 156, 2021, 107608.
Zamparette, R.L.B., Klimach, H.D., Bampi, S., A 90% efficiency 60 mW MPPT switched capacitor DC—DC converter for photovoltaic energy harvesting aiming for IoT applications. 2017 IEEE 8th Latin American Symposium on Circuits & Systems, LASCAS, 2017, IEEE, 1–4.
Zargari, S., Khalili, A., Zhang, R., Energy efficiency maximization via joint active and passive beamforming design for multiuser MISO IRS-aided SWIPT. IEEE Wireless Commun. Lett. 10:3 (2020), 557–561.
Zayas, A.D., Merino, P., The 3GPP NB-IoT system architecture for the Internet of Things. 2017 IEEE International Conference on Communications Workshops, ICC Workshops, 2017, IEEE, 277–282.
Zeadally, S., Shaikh, F.K., Talpur, A., Sheng, Q.Z., Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev., 128, 2020, 109901.
Zeb, H., Gohar, M., Ali, M., Ahmad, W., Ghani, A., Choi, J.-G., Koh, S.-J., et al. Zero energy IoT devices in smart cities using RF energy harvesting. Electronics, 12(1), 2023, 148.
ZED, H., Are you ready to be amazed?. 2022 URL: https://www.zed-iot.com/#/#features.
Zhang, J.-w., Bai, X., Han, W.-y., Zhao, B.-h., Xu, L.-j., Wei, J.-j., The design of radio frequency energy harvesting and radio frequency-based wireless power transfer system for battery-less self-sustaining applications. Int. J. RF Microw. Comput. Aided Eng., 29(1), 2019, e21658.
Zhang, S., Bristow, N., David, T.W., Elliott, F., O'Mahony, J., Kettle, J., Development of an organic photovoltaic energy harvesting system for wireless sensor networks; application to autonomous building information management systems and optimisation of OPV module sizes for future applications. Sol. Energy Mater. Sol. Cells, 236, 2022, 111550.
Zhang, J., Cheng, C., Comparative studies between KVL and BPFT in magnetically-coupled resonant wireless power transfer. IET Power Electron. 9:10 (2016), 2121–2129.
Zhang, H., Feng, M., Long, K., Karagiannidis, G.K., Leung, V.C., Poor, H.V., Energy efficient resource management in SWIPT enabled heterogeneous networks with NOMA. IEEE Trans. Wireless Commun. 19:2 (2019), 835–845.
Zhang, B., Yang, K., Wang, K., Zhang, G., Performance analysis for RIS-assisted SWIPT-enabled IoT systems. IEEE Trans. Wireless Commun., 2024.
Zhao, N., Zhang, S., Yu, F.R., Chen, Y., Nallanathan, A., Leung, V.C., Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access 5 (2017), 10403–10421.
Zheng, B., You, C., Mei, W., Zhang, R., A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications. IEEE Commun. Surv. Tutor. 24:2 (2022), 1035–1071.
Zhou, K., Nikaein, N., Spyropoulos, T., LTE/LTE-A discontinuous reception modeling for machine type communications. IEEE Wireless Commun. Lett. 2:1 (2012), 102–105.
Zhou, X., Zhang, R., Ho, C.K., Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61:11 (2013), 4754–4767.
Zhu, F., Feng, L., Jin, M., Tian, X., Wang, X., Zhou, C., 2022. Towards Ultra-Low Power OFDMA Downlink Demodulation. In: Proceedings of the Twentieth ACM Conference on Embedded Networked Sensor Systems. pp. 725–739.
Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., Wang, Z.L., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12:9 (2012), 4960–4965.