Diffusion-Weighted MRI of the Liver in Patients With Chronic Liver Disease: A Comparative Study Between Different Fitting Approaches and Diffusion Models. - 2024
Diffusion-Weighted MRI of the Liver in Patients With Chronic Liver Disease: A Comparative Study Between Different Fitting Approaches and Diffusion Models.
[en] [en] BACKGROUND: Diffusion-weighted imaging (DWI) has been considered for chronic liver disease (CLD) characterization. Grading of liver fibrosis is important for disease management.
PURPOSE: To investigate the relationship between DWI's parameters and CLD-related features (particularly regarding fibrosis assessment).
STUDY TYPE: Retrospective.
SUBJECTS: Eighty-five patients with CLD (age: 47.9 ± 15.5, 42.4% females).
FIELD STRENGTH/SEQUENCE: 3-T, spin echo-echo planar imaging (SE-EPI) with 12 b-values (0-800 s/mm2 ).
ASSESSMENT: Several models statistical models, stretched exponential model, and intravoxel incoherent motion were simulated. The corresponding parameters (Ds , σ, DDC, α, f, D, D*) were estimated on simulation and in vivo data using the nonlinear least squares (NLS), segmented NLS, and Bayesian methods. The fitting accuracy was analyzed on simulated Rician noised DWI. In vivo, the parameters were averaged from five central slices entire liver to compare correlations with histological features (inflammation, fibrosis, and steatosis). Then, the differences between mild (F0-F2) or severe (F3-F6) groups were compared respecting to statistics and classification. A total of 75.3% of patients used to build various classifiers (stratified split strategy and 10-folders cross-validation) and the remaining for testing.
STATISTICAL TESTS: Mean squared error, mean average percentage error, spearman correlation, Mann-Whitney U-test, receiver operating characteristic (ROC) curve, area under ROC curve (AUC), sensitivity, specificity, accuracy, precision. A P-value <0.05 was considered statistically significant.
RESULTS: In simulation, the Bayesian method provided the most accurate parameters. In vivo, the highest negative significant correlation (Ds , steatosis: r = -0.46, D*, fibrosis: r = -0.24) and significant differences (Ds , σ, D*, f) were observed for Bayesian fitted parameters. Fibrosis classification was performed with an AUC of 0.92 (0.91 sensitivity and 0.70 specificity) with the aforementioned diffusion parameters based on the decision tree method.
DATA CONCLUSION: These results indicate that Bayesian fitted parameters may provide a noninvasive evaluation of fibrosis with decision tree.
EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Huang, Jiqing ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) ; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
Leporq, Benjamin ; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
Hervieu, Valérie; Department of Anatomo-pathology, CHU Edouard Herriot, Hospices Civils de Lyon, Lyon, France
Dumortier, Jérôme; Department of Hepatology, CHU Edouard Herriot, Hospices Civils de Lyon, Lyon, France
Beuf, Olivier ; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
Ratiney, Hélène ; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
Language :
English
Title :
Diffusion-Weighted MRI of the Liver in Patients With Chronic Liver Disease: A Comparative Study Between Different Fitting Approaches and Diffusion Models.
CSC - China Scholarship Council ANR - Agence Nationale de la Recherche
Funding text :
We warmly thank professor Pierre‐Jean Valette (radiologist at “Hospices Civils de Lyon”) for his involvement and for facilitating the implementation of this work. This work was supported by the China Scholarship Council (CSC), and LabEx PRIMES (ANR‐11‐LABX‐0063) of Université de Lyon, within the program “Investissements d'Avenir” (ANR‐11‐IDEX‐0007) operated by the French National Research Agency (ANR).
Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cell 2020;9:875. https://doi.org/10.3390/cells9040875.
Cheemerla S, Balakrishnan M. Global epidemiology of chronic liver disease. Clin Liver Dis (Hoboken) 2021;17:365-370.
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70:151-171.
Thomaides-Brears HB, Alkhouri N, Allende D, et al. Incidence of complications from percutaneous biopsy in chronic liver disease: A systematic review and meta-analysis. Dig Dis Sci 2022;67:3366-3394.
Lewis S, Dyvorne H, Cui Y, Taouli B. Diffusion-weighted imaging of the liver: Techniques and applications. Magn Reson Imaging Clin N Am 2014;22:373-395.
Annet L, Peeters F, Abarca-Quinones J, Leclercq I, Moulin P, Van Beers BE. Assessment of diffusion-weighted MR imaging in liver fibrosis. JMagn Reson Imaging. 2007;25:122-128.
Gambarota G, Hitti E, Leporq B, Saint-Jalmes H, Beuf O. Eliminating the blood-flow confounding effect in intravoxel incoherent motion (IVIM) using the non-negative least square analysis in liver. Magn Reson Med 2017;77:310-317.
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407.
Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003;50:727-734.
Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003;50:664-669.
Leporq B, Saint-Jalmes H, Rabrait C, et al. Optimization of intra-voxel incoherent motion imaging at 3.0 tesla for fast liver examination. J Magn Reson Imaging 2015;41:1209-1217.
Lefebvre T, Hébert M, Bilodeau L, et al. Intravoxel incoherent motion diffusion-weighted MRI for the characterization of inflammation in chronic liver disease. Eur Radiol 2021;31:1347-1358.
Le Bihan D. What can we see with IVIM MRI? Neuroimage 2019;187:56-67.
Park JH, Seo N, Chung YE, et al. Noninvasive evaluation of liver fibrosis: Comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography. Eur Radiol 2021;31:4813-4823.
Seo N, Chung YE, Park YN, Kim E, Hwang J, Kim MJ. Liver fibrosis: Stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur Radiol 2018;28:2812-2822.
Fujimoto K, Noda Y, Kawai N, et al. Comparison of mono-exponential, bi-exponential, and stretched exponential diffusion-weighted MR imaging models in differentiating hepatic hemangiomas from liver metastases. Eur J Radiol 2021;141:109806. https://doi.org/10.1016/j.ejrad.2021.109806.
Anderson SW, Barry B, Soto J, Ozonoff A, O'Brien M, Jara H. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging 2014;39:827-834.
Zhou Y, Zhang HX, Zhang XS, et al. Non-mono-exponential diffusion models for assessing early response of liver metastases to chemotherapy in colorectal cancer. Cancer Imaging 2019;19:1-11.
Coupé P, Manjón JV, Gedamu E, Arnold D, Robles M, Collins DL. Robust Rician noise estimation for MR images. Med Image Anal 2010;14:483-493.
Liu J, Gambarota G, Shu H, et al. On the identification of the blood vessel confounding effect in intravoxel incoherent motion (IVIM) diffusion-weighted (DW)-MRI in liver: An efficient sparsity based algorithm. Med Image Anal 2020;61:101637. https://doi.org/10.1016/j.media.2020.101637.
Finkelstein A, Cao X, Liao C, Schifitto G, Zhong J. Diffusion encoding methods in MRI: Perspectives and challenges. Investig Magn Reson Imaging 2022;26:208-219.
Sigmund EE, Cho GY, Kim S, et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 2011;65:1437-1447.
Jalnefjord O, Andersson M, Montelius M, et al. Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). Magn Reson Mater Phys Biol Med 2018;31:715-723.
Gustafsson O, Montelius M, Starck G, Ljungberg M. Impact of prior distributions and central tendency measures on Bayesian intravoxel incoherent motion model fitting. Magn Reson Med 2018;79:1674-1683.
Rodrigues SG, Montani M, Guixé-Muntet S, De Gottardi A, Berzigotti A, Bosch J. Patients with signs of advanced liver disease and clinically significant portal hypertension do not necessarily have cirrhosis. Clin Gastroenterol Hepatol 2019;17:2101-2109.
Arjmand A, Tsipouras MG, Tzallas AT, Forlano R, Manousou P, Giannakeas N. Quantification of liver fibrosis—A comparative study. Appl Sci 2020;10:447. https://doi.org/10.3390/app10020447.
Yin Z, Murphy MC, Li J, et al. Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography. Eur Radiol 2019;29:5823-5831.
Bouhrara M, Reiter DA, Spencer RG. Bayesian analysis of transverse signal decay with application to human brain. Magn Reson Med 2015;74:785-802.
Leitão HS, Doblas S, d'Assignies G, et al. Fat deposition decreases diffusion parameters at MRI: A study in phantoms and patients with liver steatosis. Eur Radiol 2013;23:461-467.
Besheer T, Razek A, El Bendary M, et al. Does steatosis affect the performance of diffusion-weighted MRI values for fibrosis evaluation in patients with chronic hepatitis C genotype 4? Turk J Gastroenterol 2017;28:283-288.
Yang L, Rao S, Wang W, et al. Staging liver fibrosis with DWI: Is there an added value for diffusion kurtosis imaging? Eur Radiol 2018;28:3041-3049.
Shin MK, Song JS, Hwang SB, Hwang HP, Kim YJ, Moon WS. Liver fibrosis assessment with diffusion-weighted imaging: Value of liver apparent diffusion coefficient normalization using the spleen as a reference organ. Diagnostics 2019;9:107. https://doi.org/10.3390/diagnostics9030107.
Liang J, Song X, Xiao Z, Chen H, Shi C, Luo L. Using IVIM-MRI and R2* mapping to differentiate early stage liver fibrosis in a rat model of radiation-induced liver fibrosis. Biomed Res Int 2018;2018:4673814. https://doi.org/10.1155/2018/4673814.
Kim J, Yoon H, Lee M-J, et al. Clinical utility of mono-exponential model diffusion weighted imaging using two b-values compared to the bi-or stretched exponential model for the diagnosis of biliary atresia in infant liver MRI. PLoS One 2019;14:e0226627. https://doi.org/10.1371/journal.pone.0226627.
Graupera I, Thiele M, Ma AT, et al. LiverScreen project: Study protocol for screening for liver fibrosis in the general population in European countries. BMC Public Health 2022;22:1-10.
Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 2015;73:306-311.
Li YT, Cercueil JP, Yuan J, Chen W, Loffroy R, Wáng YX. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 2017;7:59-78.
Li T, Che-Nordin N, Wáng YXJ, et al. Intravoxel incoherent motion derived liver perfusion/ diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis. Quant Imaging Med Surg 2019;9:371-385.
Chevallier O, Zhou N, Cercueil J, He J, Loffroy R, Wáng YXJ. Comparison of tri-exponential decay versus bi-exponential decay and full fitting versus segmented fitting for modeling liver intravoxel incoherent motion diffusion MRI. NMR Biomed 2019;32:e4155. https://doi.org/10.1002/nbm.4155.