[en] Conventional manufacturing of solid dosage forms (e.g., tablets, capsules) demands multiple unit operations and handling of solids, known to be more challenging than handling liquids. To circumvent these challenges, this study explored liquid dispensing to manufacture an oral solid dosage form. The presented additive manufacturing process dispenses a solution (drug substance, solvent, polymer) into a carrier (capsule). Upon controlled solvent evaporation, the model active pharmaceutical ingredient, racemic modafinil (MOD), crystallizes inside a polymer matrix (polyethylene glycol) generating a crystalline solid dispersion. The critical process parameters (e.g., temperature, concentration, evaporation rate, choice of solvent) and key performance metrics were evaluated to ensure robust crystalline solid dispersion manufacturing. The coupled crystallization and formulation process delivers the desired polymorph form I of MOD inside a crystalline solid dispersion that matches the quality attributes of commercially formulated MOD tablets (Provigil®) following US Pharmacopeia methods. Moreover, the developed workflow and insights presented provide a generalizable approach applicable to other drug substance - polymer - solvent systems, independent if crystalline or amorphous solid dispersion is needed. Ultimately, this study demonstrates the flexible (additive) formulation of solid dosage forms, needed for, e.g., point-of-use manufacturing in remote areas or personalized medicine via a process intensification approach.
Research Center/Unit :
MolSys - Molecular Systems - ULiège Center for Integrated Technology and Organic Synthesis
Mbodji, Aliou ; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, United States
Cruz, Kelitsha Mulero; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, United States, Department of Environmental Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00926, United States
Gómez, Andrea Arroyo; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, United States, Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00926, United States
Vlaar, Cornelis P ; Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, United States
Duconge, Jorge ; Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, United States
Cersonsky, Rose K ; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53705, United States
Yu, Lian; School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, Unites States, Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, United States
Zhang, Geoff Gz ; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States, ProPhysPharm, Lincolnshire, IL 60069, United States
Coquerel, Gérard ; SMS Laboratory EA3233, University of Rouen Normandy, Mont Saint Aignan CEDEX, F-76821, France
Romañach, Rodolfo J ; Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, United States
Stelzer, Torsten ; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, United States, Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, United States. Electronic address: torsten.stelzer@upr.edu
Language :
English
Title :
Controlled API crystallization during additive manufacturing of solid dosage form for flexible integrated pharmaceutical manufacturing.
NASA - National Aeronautics and Space Administration NSF - National Science Foundation UPR - Universidad de Puerto Rico
Funding text :
This work was primarily supported by the National Aeronautics and Space Administration Experimental Program to Stimulate Competitive Research (80NSSC19M0148). Additional support was provided by the National Science Foundation (NSF) Wisconsin - Puerto Rico Partnership for Research and Education in Materials (DMR-1827894) as well as the UPR-UW PREM: Center for Advancing Research and Training for STEM Success (DMR-2425113). The Rigaku XtaLAB SuperNova X-ray micro diffractometer and TGA TA Q500 were acquired through the support of NSF under the Major Research Instrumentation Program (CHE-1626103) and the Puerto Rico Institute for Functional Nanomaterials (EPS-100241).The authors wish to thank Materials Characterization Center (MCC) at the University of Puerto Rico Molecular Sciences Research Center, particularly, Mildred Rivera-Isaac for her help with the GC analysis. We also gratefully acknowledge the support of all members of the Crystallization Design Institute (CDI) for their discussions and suggestions.
Adamo, A., Beingessner, R.L., Behnam, M., Chen, J., Jamison, T.F., Jensen, K.F., Monbaliu, J.C.M., Myerson, A.S., Revalor, E.M., Snead, D.R., Stelzer, T., Weeranoppanant, N., Wong, S.Y., Zhang, P., On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352:6281 (2016), 61–67.
Alfonsi, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., Stefaniak, M., Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem. 10:1 (2008), 31–36.
Alhijjaj, M., Nasereddin, J., Belton, P., Qi, S., Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics, 11, 2019, 633.
Archer, W.L., Hansen solubility parameters for selected cellulose ether. Drug Dev. Ind. Pharm. 8 (1992), 599–616.
Armstrong, C.D., Todd, N., Alsharhan, A.T., Bigio, D.I., Sochol, R.D., A 3D printed morphing nozzle to control fiber orientation during composite additive manufacturing. Adv. Mater. Technol. 6:1 (2021), 1–10.
Awad, A., Trenfield, S.J., Basit, A.W., 2021. Solid oral dosage forms. In: Remington: The Science and Practice of Pharmacy; Academic Press, 2021. p 333–358.
Azad, M.A., Osorio, J.G., Brancazio, D., Hammersmith, G., Klee, D.M., Rapp, K., Myerson, A., A compact, portable, re-configurable, and automated system for on-demand pharmaceutical tablet manufacturing. Int. J. Pharm. 539:1–2 (2018), 157–164.
Beckmann, W., 2013. Crystallization: Basic Concepts and Industrial Applications; Wiley-VCH Verlag GmbH & Co. KGaA, Ed.; Wiley: Weinheim, 2013.
Brittain, H.G., 2009. Polymorphism in Pharmaceutical Solids, Second Edi.; Informa Healthcare; USA; Inc.: New York; 2009.
Broquaire, M., Courvoisier, M., Frydman, A., Coquerel, G., Mallet, F., Broquaire, V., Broquaire, L., 2004. Modafinil Polymorphic Forms. US 2004/0102523 A1, 2004.
Byrn, S., Futran, M., Thomas, H., Jayjock, E., Maron, N., Meyer, R.F., Myerson, A.S., Thien, M.P., Trout, B.L., Achieving continuous manufacturing for final dosage formation: challenges and how to meet them may 20-21, 2014 continuous manufacturing symposium. J. Pharm. Sci. 104:3 (2015), 792–802.
Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., Robert McElroy, C., Sherwood, J., Tools and techniques for solvent selection: green solvent selection guides. Sustain. Chem. Process. 4:1 (2016), 1–24.
Caldwell, S.M., Raitt, J.R., Oral medication administration: implications caused by capsule splitting. J. Am. Pharm. Assoc. 50:4 (2010), 532–533.
Carou-Senra, P., Rodríguez-Pombo, L., Awad, A., Basit, A.W., Alvarez-Lorenzo, C., Goyanes, A., Inkjet printing of pharmaceuticals. Adv. Mater. 36:11 (2024), 1–28.
Castro, S.G., Sanchez Bruni, S.F., Urbizu, L.P., Confalonieri, A., Ceballos, L., Lanusse, C.E., Allemandi, D.A., Palma, S.D., Enhanced dissolution and systemic availability of albendazole formulated as solid dispersions. Pharm. Dev. Technol. 18:2 (2013), 434–442.
Ceausu, A., Lieberman, A., Aronhime, J., 2011. US Patent. US8048222B2.
Chen, E.C., Mcguire, G., Lee, H.Y., Solubility isotherm of the FeC12-MgC12-HCI-H20 system. J. Chem. Eng. Data 15:3 (1970), 448–449.
Chiou, W.L., Riegelman, S., Pharmaceutical applications of solid dispersion systems. J. Pharm. Res. Int. 60:9 (1971), 1281–1302.
Clarke, A., Doughty, D., 2017. Development of liquid dispensing technology for the manufacture of low dose drug products. In: Continuous Manufacturing of Pharmaceuticals; Peter Kleinebudde, Johannes Khinast, and J. R., Ed.; John Wiley & Sons Ltd: West Sussex, 2017, pp 553–577.
Craig, D.Q.M., The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 231:2 (2002), 131–144.
Curti, C., Kirby, D.J., Russell, C.A., Current formulation approaches in design and development of solid oral dosage forms through three-dimensional printing. Prog. Addit. Manuf. 5:2 (2020), 111–123.
D'souza, A.A., Shegokar, R., Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13:9 (2016), 1257–1275.
Denis, L., Jørgensen, A.K., Fleury, T., Daguet, E., Vaz-luis, I., Pistilli, B., Rieutord, A., Basit, A.W., Goyanes, A., Annereau, M., Developing an innovative 3D printing platform for production of personalised medicines in a hospital for the OPERA clinical trial. Int. J. Pharm., 661, 2024, 124306.
Desai, K.G.H., Park, H.J., Solubility studies on valdecoxib in the presence of carriers, cosolvents, and surfactants. Drug Dev. Res. 62:1 (2004), 41–48.
Dinc, C.O., Kibarer, G., Guner, A., Solubility profiles of poly(ethylene glycol)/solvent systems. II. Comparison of thermodynamic parameters from viscosity measurements. J. Appl. Polym. Sci. 117:5 (2009), 1100–1119.
Dobry, A., Boyer-Kawenoki, F., Phase Separation in polymer solution. Phys. A Stat. Mech. Its Appl. 194:1–4 (1946), 532–541.
Eloy, J.O., Marchetti, J.M., Solid dispersions containing ursolic acid in poloxamer 407 and PEG 6000: a comparative study of fusion and solvent methods. Powder Technol. 253 (2014), 98–106.
Fang, Q., Xiong, G., Zhou, M.C., Tamir, T.S., Yan, C.B., Wu, H., Shen, Z., Wang, F.Y., Process monitoring, diagnosis and control of additive manufacturing. IEEE Trans. Autom. Sci. Eng. 21:1 (2024), 1041–1067.
FDA. Quality Considerations for Continuous Manufacturing: Guidance for Industry. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
Figueroa, F.R., Hernandez Espinell, R.J., Manivel, S., Yu, L., Zhang, G.G.Z., Stelzer, T., Process controlled polymorphic phase transformation in crystalline solid dispersions : impact of temperature, pressure, and shear stress. Cryst. Growth Des. 24:27 (2024), 8866–8875.
Fontalvo Gómez, M., Johnson Restrepo, B., Stelzer, T., Romañach, R.J., Process analytical chemistry and nondestructive analytical methods: the green chemistry approach for reaction monitoring, control, and analysis. Handb. Green Chem. 12 (2019), 257–288.
Food and Drug Administration. International Council for Harmonisation. Guidance for Industry Q3C. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
Goel, N. Suspensions-I. In: Edited Book of Pharmaceutics – I; E-ISBN:978-93-6252-980-0, Ed.; Iterative International Publishers (IIP): Satna; 2024. pp 142–150.
Guan, Q., Chen, W., Hu, X., Development of lovastatin-loaded poly(lactic acid) microspheres for sustained oral delivery: in vitro and ex vivo evaluation. Drug Des. Devel. Ther. 9 (2015), 791–798.
Guo, Y., Yin, Q., Hao, H., Zhang, M., Bao, Y., Hou, B., Chen, W., Zhang, H., Cong, W., Measurement and correlation of solubility and dissolution thermodynamic properties of furan-2-carboxylic acid in pure and binary solvents. J. Chem. Eng. Data 59:4 (2014), 1326–1333.
Ha, E.S., Ha, D.H., Kuk, D.H., Sim, W.Y., Baek, I. hwan, Kim, J.S., Park, H.J., Kim, M.S., 2017. Solubility of Cilostazol in the Presence of Polyethylene Glycol 4000, Polyethylene Glycol 6000, Polyvinylpyrrolidone K30, and Poly(1-Vinylpyrrolidone-Co-Vinyl Acetate) at Different Temperatures. J. Chem. Thermodyn. 2017, 113, 6–10.
Haglund, B.O., Solubility of polyethylene glycol in ethanol and water. Thermochim. Acta Acta 114 (1987), 97–102.
Hausner, D.B., Moore, C.M.V., 2022. Regulatory Considerations for Continuous Solid Oral Dose Pharmaceutical Manufacturing. In: How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems; Academic Press, 2022; pp 301–318.
Hernández Espinell, J.R., Toro, V., Yao, X., Yu, L., Lopéz-Mejías, V., Stelzer, T., Solvent-mediated polymorphic transformations in molten polymers: the account of acetaminophen. Mol. Pharm. 19:7 (2022), 2183–2190.
Hernández, E.J.R., Toro, V., Yao, X., Yu, L., Lopéz-Mejías, V., Stelzer, T., Solvent-mediated polymorphic transformations in molten polymers: the account of acetaminophen. Mol. Pharm. 19:7 (2022), 2183–2190.
Hessel, V., Jana Stoudemire, J., Miyamoto, H., Fisk, I.D., 2022. In‐Space Manufacturing and Resources: Earth and Planetary Exploration Applications; Wiley‐VCH GmbH, 2022.
Hill, S.W., Varker, A.S., Karlage, K., Myrdal, P.B., Analysis of drug content and weight uniformity for half-tablets of 6 commonly split medications. J. Manag. Care Pharm. 15:3 (2009), 253–261.
Hirshfield, L., Giridhar, A., Taylor, L.S., Harris, M.T., Reklaitis, G.V., Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms. J. Pharm. Sci. 103:2 (2014), 496–506.
Hoffmann, M.M., Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci., 57, 2022, 101537.
Içten, E., Giridhar, A., Taylor, L.S., Nagy, Z.K., Reklaitis, G.V., Dropwise Additive Manufacturing of Pharmaceutical Products for Melt-based Dosage Forms. J. Pharm. Sci. 104:5 (2015), 1641–1649.
Içten, E., Giridhar, A., Nagy, Z.K., Reklaitis, G.V., Drop-on-demand system for manufacturing of melt-based solid oral dosage: effect of critical process parameters on product quality. AAPS PharmSciTech 17:2 (2016), 284–293.
Içten, E., Purohit, H.S., Wallace, C., Giridhar, A., Taylor, L.S., Nagy, Z.K., Reklaitis, G.V., Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems. Int. J. Pharm. 524:1–2 (2017), 424–432.
Jamróz, W., Szafraniec, J., Kurek, M., Jachowicz, R., 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm. Res., 35(9), 2018, 176.
Jiménez Cruz, J.M., Vlaar, C.P., López-Mejías, V., Stelzer, T., Solubility measurements and correlation of MBQ-167 in neat and Binary solvent mixtures. J. Chem. Eng. Data 66:1 (2021), 832–839.
Kabeya, K., Satoh, H., Hori, S., Miura, Y., Sawada, Y., Threshold size of medical tablets and capsules: based on information collected by japanese medical wholesaler. Patient Prefer. Adherence 14 (2020), 1251–1258.
Kesisoglou, F., Wu, Y., Understanding the effect of API properties on bioavailability through absorption modeling. AAPS J. 10:4 (2008), 516–525.
Kinugasa, S., Nakahara, H., Fudagawa, N., Koga, Y., Aggregative behavior of poly(ethylene oxide) in water and methanol. Macromolecules 27:23 (1994), 6889–6892.
Kredlow, M.A., Keshishian, A., Oppenheimer, S., Otto, M.W., The efficacy of modafinil as a cognitive enhancer: a systematic review and meta-analysis. J. Clin. Psychopharmacol. 39:5 (2019), 455–461.
Krupčík, J., Májek, P., Gorovenko, R., Blaško, J., Kubinec, R., Sandra, P., Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1396 (2015), 117–130.
Kulshreshtha, A.K., Singh, O.N., Wall, G.M., Pharmaceutical Suspensions: from Formulation Development to Manufacturing. 2009, Springer, London.
Le Khanh, H.P., Haimhoffer, Á., Nemes, D., Józsa, L., Vasvári, G., Budai, I., Bényei, A., Ujhelyi, Z., Fehér, P., Bácskay, I., Effect of molecular weight on the dissolution profiles of peg solid dispersions containing Ketoprofen. Polymers (Basel), 15, 2023, 1758.
Leung, D.H., Development of nanosuspension formulations compatible with inkjet printing for the convenient and precise dispensing of poorly soluble drugs. Pharmaceutics, 14, 2022, 449.
Lewin, J.J., Choi, E.J., Ling, G., Pharmacy on demand: new technologies to enable miniaturized and mobile drug manufacturing. Am. J. Heal. Pharm. 73:2 (2016), 45–54.
Lippold, B.C., Ohm, A., Correlation between wettability and dissolution rate of pharmaceutical powders. Int. J. Pharm. 28:1 (1986), 67–74.
Llinàs, A., Goodman, J.M., Polymorph control: past, present and future. Drug Discov. Today 13:5–6 (2008), 198–210.
Lloyd, G.R., Craig, D.Q.M., Smith, A., A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Eur. J. Pharm. Biopharm. 48:1 (1999), 59–65.
López Burgos, G., Hernández Espinell, J.R., Graciani-Massa, T., Yao, X., Borchardt-Setter, K.A., Yu, L., López-Mejías, V., Stelzer, T., Role of heteronucleants in melt crystallization of crystalline solid dispersions. Cryst. Growth Des. 23:1 (2023), 49–58.
López-Mejías, V., Kampf, J.W., Matzger, A.J., Polymer-induced heteronucleation of tolfenamic acid: structural investigation of a pentamorph. J. Am. Chem. Soc. 131:13 (2009), 4554–4555.
López-Mejías, V., Kampf, J.W., Matzger, A.J., Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures. J. Am. Chem. Soc. 134:24 (2012), 9872–9875.
Lu, Y., Tang, N., Lian, R., Qi, J., Wu, W., Understanding the relationship between wettability and dissolution of solid dispersion. Int. J. Pharm. 465:1–2 (2014), 25–31.
Mabesoone, M.F.J., Palmans, A.R.A., Meijer, E.W., Solute-solvent interactions in modern physical organic chemistry: supramolecular polymers as a muse. J. Am. Chem. Soc. 142:47 (2020), 19781–19798.
Mahieux, J., Sanselme, M., Coquerel, G., Access to single crystals of (±)-form IV of modafinil by crystallization in gels. Comparisons between (±)-forms I, III, and IV and (-)-form I. Cryst. Growth Des. 13:2 (2013), 908–917.
Mahieux, J., Sanselme, M., Coquerel, G., Access to several polymorphic forms of (±)-modafinil by using various solvation-desolvation processes. Cryst. Growth Des. 16:1 (2016), 396–405.
Marcus, Y., The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22:6 (1993), 409–416.
Martínez-Jiménez, J.E., Sathisaran, I., Reyes Figueroa, F., Reyes, S., López-Nieves, M., Vlaar, C.P., Monbaliu, J.-C.-M., Romañach, R., Ruaño, G., Stelzer, T., Duconge, J., A review of precision medicine in developing pharmaceutical products: perspectives and opportunities. Int. J. Pharm., 670, 2025, 125070.
Mbodji, A., Agrawal, S., Mulero Cruz, K., Perez-Molares, D., P. Vlaar, C., Duconge, J., M. Monbaliu, J.-C., Stelzer, T., 2024. Solubility measurements and correlation of modafinil in neat solvents and binary solvent mixtures. J. Chem. Eng. Data 2024, 69(5), 1984–1993.
Mehta, A.C., Dissolution testing of tablet and capsule dosage forms. J. Clin. Pharm. Ther. 18:6 (1993), 415–420.
Miller-Chou, B.A., Koenig, J.L., A review of polymer dissolution. Prog. Polym. Sci. 28:8 (2003), 1223–1270.
Milton Harris, J., Chess, R.B., Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:3 (2003), 214–221.
Mohammed, A.Q., Sunkari, P.K., Srinivas, P., Roy, A.K., Quality by design in action 1: Controlling critical quality attributes of an active pharmaceutical ingredient. Org. Process Res. Dev. 19:11 (2015), 1634–1644.
Muller, F.L., Fielding, M., Black, S., A practical approach for using solubility to design cooling crystallisations. Org. Process Res. Dev. 13:6 (2009), 1315–1321.
Mura, P., Faucci, M.T., Manderioli, A., Bramanti, G., Parrini, P., Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev. Ind. Pharm. 25:3 (1999), 257–264.
Myerson, A.S., Erdemir, D., Lee, A.Y., 2019. Handbook of Industrial Crystallization, Third Edit.; Cambridge University Press: Cambridge, UK, 2019.
Nadgorny, M., Xiao, Z., Chen, C., Connal, L.A., Three-dimensional printing of ph-responsive and functional polymers on an affordable desktop printer. ACS Appl. Mater. Interfaces 8:42 (2016), 28946–28954.
NASA. Emergency Medical Procedures Manual for the International Space Station (ISS) [Partial]; 2016.
National Academies of Sciences, Engineering, and M. Innovations in Pharmaceutical Manufacturing on the Horizon: Technical Challenges, Regulatory Issues, and Recommendations. In Proceedings of a Workshop-in Brief; The National Academic Press: Washington DC, 2020.
Niese, S., Quodbach, J., Formulation development of a continuously manufactured orodispersible film containing warfarin sodium for individualized dosing. Eur. J. Pharm. Biopharm. 136 (2019), 93–101.
Okwuosa, T.C., Soares, C., Gollwitzer, V., Habashy, R., Timmins, P., Alhnan, M.A., On demand manufacturing of patient-specific liquid capsules via co-ordinated 3d printing and liquid dispensing. Eur. J. Pharm. Sci. 2018:118 (2017), 134–143.
Palo, M., Kogermann, K., Laidmäe, I., Meos, A., Preis, M., Heinämäki, J., Sandler, N., Development of oromucosal dosage forms by combining electrospinning and inkjet printing. Mol. Pharm. 14:3 (2017), 808–820.
Panchal, M.S., Patel, H., Bagada, A., Vadalia, K.R., Formulation and evaluation of mouth dissolving film of perindopril by using natural polymers. Int. J. Pharm. Res. Allied Sci. 1:3 (2012), 60–72.
Pardeike, J., Strohmeier, D.M., Schrödl, N., Voura, C., Gruber, M., Khinast, J.G., Zimmer, A., Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm. 420:1 (2011), 93–100.
Park, C., Renuka, V.S., Lee, B.J., de la Peña, I., Park, J.B., Advancements of hot-melt extrusion technology to address unmet patient needs and pharmaceutical quality aspects. J. Pharm. Investig. 55:3 (2024), 333–350.
Patel, S.K., Khoder, M., Peak, M., Alhnan, M.A., Controlling drug release with additive manufacturing-based solutions. Adv. Drug Deliv. Rev. 174 (2021), 369–386.
Pauchet, M., Morelli, T., Coste, S., Malandain, J.J., Coquerel, G., Crystallization of (±)-modafinil in gel: access to form I, form III, and twins. Cryst. Growth Des. 6:8 (2006), 1881–1889.
Paul, E.L., Atiemo‐Obeng, V.A., Kresta, S.M., 2004. Handbook of Industrial Mixing: Science and Practice; John Wiley & Sons Inc.: New York; 2004.
Pei, W., Sun, L., Shao, Y., Li, D., 2-(Benzhydrylsulfinyl)Acetamide. Acta Crystallogr Sect. E Struct. Reports Online 60:3 (2004), 372–373.
Prasad, D., Chauhan, H., Atef, E., Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug-polymer-polymer ternary solution. Mol. Pharm. 13:3 (2016), 756–765.
Qiu, C., Zhang, Y., Fan, Y., Li, S., Gao, J., He, X., Zhao, X., Solid dispersions of genistein via solvent rotary evaporation for improving solubility, bioavailability, and amelioration effect in HFD-induced obesity mice. Pharmaceutics, 16(3), 2024, 306.
Radcliffe, A.J., Hilden, J.L., Nagy, Z.K., Reklaitis, G.V., Dropwise additive manufacturing of pharmaceutical products using particle suspensions. J. Pharm. Sci. 108:2 (2019), 914–928.
Rahman, Z., Akhtar, S., Siddiqui, A., Ciavarella, A.B., Nguyenpho, A., Faustino, P.J., Khan, M.A., A headspace-gas chromatography method for isopropanol determination in warfarin sodium products as a measure of drug crystallinity. Acta Pharm. 68:1 (2018), 31–46.
Rathi, P.B., Kale, M., Soleymani, J., Jouyban, A., Solubility of etoricoxib in aqueous solutions of glycerin, methanol, polyethylene glycols 200, 400, 600, and propylene glycol at 298.2 K. J. Chem. Eng. Data 63:2 (2018), 321–330.
Reus, M.a., van der Heijden, A.E.D.M., ter Horst, J.H., 2015. Solubility Determination from Clear Points upon Solvent Addition. Org. Process Res. Dev. 2015, 19, 1004–1011.
Reyes Figueroa, F., Hernández Espinell, J.R., Hernández, M.H., López-Mejías, V., Stelzer, T., Polymorphic phase transformations in crystalline solid dispersions: the combined effect of pressure and temperature. Cryst. Growth Des. 22:5 (2022), 2903–2909.
Roche, P., Glennon, B., Jones, R.C., Donnellan, P., Low-temperature evaporation of continuous pharmaceutical process streams in a bubble column. Chem. Eng. Res. Des. 166 (2021), 74–85.
Rodríguez-Maciñeiras, X., Bendicho-Lavilla, C., Rial, C., Garba-Mohammed, K., Worsley, A., Díaz-Torres, E., Orive-Martínez, C., Orive-Mayor, Á., Basit, A. W., Alvarez-Lorenzo, C., Goyanes, A., 2025. Advancing medication compounding: use of a pharmaceutical 3D printer to auto-fill minoxidil capsules for dispensing to patients in a community pharmacy. Int. J. Pharm. 671, 125251.
Rogers, L., Briggs, N., Achermann, R., Adamo, A., Azad, M., Brancazio, D., Capellades, G., Hammersmith, G., Hart, T., Imbrogno, J., Kelly, L.P., Liang, G., Neurohr, C., Rapp, K., Russell, M.G., Salz, C., Thomas, D.A., Weimann, L., Jamison, T.F., Myerson, A.S., Jensen, K.F., Continuous production of five active pharmaceutical ingredients in flexible plug-and-play modules: a demonstration campaign. Org. Process Res. Dev. 24:10 (2020), 2183–2196.
Romañach, R.J., Stelzer, T., Sanchez, E., Advanced pharmaceutical manufacturing: a functional definition. J. Adv. Manuf. Process, 5(2), 2023, e10150.
Sanabria Ortiz, K., Hernández Espinell, J.R., Ortiz Torres, D., López-Mejías, V., Stelzer, T., Polymorphism in solid dispersions. Cryst. Growth Des. 20:2 (2020), 713–722.
Sangwal, K., 2007. Additives and Crystallization Processes: From Fundamental to Applications, Sangwal, K.; West Sussex, 2007.
Schall, J.M., Myerson, A.S., 2019. Solutions and Solute Properties. In Handbook of Industrial Crystallization; Cambridge University Press: Cambridge, UK, 2019; pp 1–31.
Scott, R.L., The thermodynamics of high polymer solutions. v. phase equilibria in the ternary system: polymer 1 - polymer 2 - solvent. J. Chem. Phys. 17:3 (1949), 279–284.
Seoane-Viaño, I., Ong, J.J., Basit, A.W., Goyanes, A., To infinity and beyond: strategies for fabricating medicines in outer space. Int. J. Pharm. X 4 (2022), 29–39.
Shahbazi, M., Jäger, H., Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater. 4:1 (2021), 325–369.
Silva-Brenes, D., Agrawal, S., López-Mejías, V., Duconge, J., Vlaar, C.P., Monbaliu, J.C., Stelzer, T., Continuous flow synthesis and crystallization of modafinil: a novel approach for integrated manufacturing. React. Chem. Eng. 9 (2024), 2728–2739.
Silva-Brenes, D.S., Emmanuel, N., López Mejías, V., Duconge, J., Vlaar, C., Stelzer, T., Monbaliu, J.C.M., Out-smarting smart drug modafinil through flow chemistry. Green Chem. 24 (2022), 2094–2103.
Smallwood, I., Handbook of Organic Solvent Properties. 1996, John Wiley & Sons Inc, New York.
Soltanpour, S., Bastami, Z., Sadeghilar, S., Kouhestani, M., Pouya, F., Jouyban, A., Solubility of clonazepam and diazepam in polyethylene glycol 200, propylene glycol, n‑methyl pyrrolidone, ethanol, and Water at (298.2 to 318.2) K and in binary and ternary mixtures of polyethylene glycol 200, propylene glycol, and water at 298.2 K. J. Chem. Eng. Data 58 (2013), 307–314.
Stegemann, S., Connolly, P., Matthews, W., Barnett, R., Aylott, M., Schrooten, K., Cadé, D., Taylor, A., Bresciani, M., Application of QbD principles for the evaluation of empty hard capsules as an input parameter in formulation development and manufacturing. AAPS PharmSciTech 15:3 (2014), 542–549.
Stelzer, T., Lakerveld, R., Myerson, A.S., 2020. Process intensification in continuous crystallization. In: The Handbook of Continuous Crystallization; Yazdanpanah, N.; Nagy, Z., Ed.; Royal Society of Chemistry: Cambridge, 2020; pp 266–320.
Stelzer, T., Ulrich, J., No product design without process design (control)?. Chem. Eng. Technol. 33:5 (2010), 723–729.
Stokes, S.P., Seaton, C.C., Eccles, K.S., Maguire, A.R., Lawrence, S.E., Insight into the mechanism of formation of channel hydrates via templating. Cryst. Growth Des. 14:3 (2014), 1158–1166.
Sundarkumar, V., Nagy, Z.K., Reklaitis, G.V., Small-scale continuous drug product manufacturing using dropwise additive manufacturing and three phase settling for integration with upstream drug substance production. J. Pharm. Sci. 111:8 (2022), 2330–2340.
*The abbreviation CSD is commonly used in the pharmaceutical sciences and industrial Crystallization fields for two different meanings. To prevent confusion, in this work the abbreviation CrySoD is used for crystalline solid dispersion.
Thimmasetty, J., Ghosh, T., Nagar, S.N., Kamath, S., Seetharaman, S., Mohamed, A.K., Enhanced solubility of modafinil via solubilization techniques. J. Young Pharm. 12:2 (2020), 129–134.
Trupej, N., Hrnčič, M.K., Škerget, M., Knez, Ž., Solubility and binary diffusion coefficient of argon in polyethylene glycols of different molecular weights. J. Supercrit. Fluids 103 (2015), 10–17.
U.S. Air Force, 2019. Official Air Force Approved Aircrew Medications; Falls Church, VA.
Ulrich, J., Stelzer, T., 2011. Crystallization. In Encyclopedia of Chemical Technology; Heinemann, B., Ed.; John Wiley & Sons Inc: Oxford, 2011; pp 1–63.
United States Pharmacopeia. <467> Residual Solvents. In Organic Volatile Impurities; 2007; Vol. 7.
United States Pharmacopeia, 2011. 〈905〉 Uniformity of Dosage Units. In Harmonization Status for General Chapters.
United States Pharmacopeia. Modafinil Tablets. https://online.uspnf.com/uspnf/document/1_GUID-32E600BE-2DD9-44E7-9394-99D1 90D380B5_5_en-US (accessed 2025-01-20).
United States Pharmacopeia. 〈857〉 Ultraviolet-Visible Spectroscopy. In Harmonization Status for General Chapters; 2020.
United States Pharmacopeia. <711> Dissolution. In Harmonization Status for General Chapters; 2011.
Urwin, S.J., Levilain, G., Marziano, I., Merritt, J.M., Houson, I., Ter Horst, J.H., A structured approach to cope with impurities during industrial crystallization development. Org. Process Res. Dev. 24:8 (2020), 1443–1456.
Vasconcelos, T., Sarmento, B., Costa, P., Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 12:23–24 (2007), 1068–1075.
Vázquez Marrero, V.R., Piñero Berriós, C., De Dios Rodríguez, L., Stelzer, T., López-Mejiás, V., In the context of polymorphism: accurate measurement, and validation of solubility data. Cryst. Growth Des. 19:7 (2019), 4101–4108.
Vellema, J., Hunfeld, N.G.M., Van Den Akker, H.E.A., Ter Horst, J.H., Avoiding crystallization of lorazepam during infusion. Eur. J. Pharm. Sci. 44:5 (2011), 621–626.
Wang, C., Ma, C.Y., Hong, R.S., Turner, T.D., Rosbottom, I., Sheikh, A.Y., Yin, Q., Roberts, K.J., Influence of solvent selection on the crystallizability and polymorphic selectivity associated with the formation of the “disappeared” form i polymorph of ritonavir. Mol. Pharm. 21 (2024), 3525–3539.
Wang, Y., Müllertz, A., Rantanen, J., Additive manufacturing of solid products for oral drug delivery using binder jetting three-dimensional printing. AAPS PharmSciTech, 23(6), 2022, 196.
Williams, R.O., Sykora, M.A., Mahaguna, V., Method to recover a lipophilic drug from hydroxypropyl methylcellulose matrix tablets. AAPS PharmSciTech 2:2 (2001), 29–37.
Wolf, B., Eckelt, A., Eckelt, J. Solubility of polymers. In: Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Mainz; 2002. p. 612–626.
Xu, X., Yang, J., Jonhson, W., Wang, Y., Suwardi, A., Ding, J., Guan, C., Zhang, D., Additive manufacturing solidification methodologies for ink formulation. Addit. Manuf., 56, 2022, 102939.
Yamamoto, Y., Kanayama, N., Nakayama, Y., Matsushima, N., Current status, issues and future prospects of personalized medicine for each disease. J. Pers. Med., 12(3), 2022, 444.
Yu, L.X., Amidon, G., Khan, M.A., Hoag, S.W., Polli, J., Raju, G.K., Woodcock, J., Understanding pharmaceutical quality by design. AAPS J. 16:4 (2014), 771–783.
Zhang, G., Weeranoppanant, N., Dale, A.T., Tahara, K., Stelzer, T., Russell, M.G., O'Mahony, M., Myerson, A.S., Lin, H., Kelly, L.P., Jensen, K.F., Jamison, T.F., Dai, C., Cui, Y., Briggs, N., Beingessner, R.L., Adamo, A., Advanced continuous flow platform for on-demand pharmaceutical manufacturing. Chem. - A Eur. J. 24:11 (2018), 2776–2784.
Zhu, Q., Harris, M.T., Taylor, L.S., Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol. Pharm. 9:3 (2012), 546–553.
Zorrilla-Veloz, R.I., Stelzer, T., López-Mejías, V., Measurement and correlation of the solubility of 5-fluorouracil in pure and binary solvents. J. Chem. Eng. Data 63:10 (2018), 3809–3817.