1,2-dioxetanes; chemometrics; flow chemistry; photooxygenation; Schenck ene reaction; 1,2-dioxetane; Chemometrices; Dioxetanes; Ene reaction; Flow chemistry; Flow condition; In-silico; Photooxygenation reactions; Photooxygenations; Analytical Chemistry; Physical and Theoretical Chemistry; Organic Chemistry
Abstract :
[en] The photooxygenation reaction of olefins was investigated in a LED flow reactor module from both experimental and in-silico point of view. Initially, operating parameters potentially affecting the photoreaction efficiency, including the loading of the photosensitizer (methylene blue) (mol %), residence time and temperature were screened. The optimal conditions were then applied for the synthesis of 1,2-dioxetanes providing a straightforward and scalable approach to important chemiluminescent molecular probes for bioanalytical and diagnostic applications. Moreover, the scope of the reaction was tested for the oxidation of diverse alkenes under Schenck ene conditions leading synthetically useful hydroperoxides. From this, a chemometric analysis was performed to propose a preliminary in-silico model useful to both rationalize and predict the photooxygenation reaction outcome.
Research Center/Unit :
MolSys - Molecular Systems - ULiège Center for Integrated Technology and Organic Synthesis
Disciplines :
Chemistry
Author, co-author :
Moroni, Giada; Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy ; Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
Tsai, Yi-Hsuan ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis
Ballarotto, Marco; Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy ; Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
Carotti, Andrea; Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
Monbaliu, Jean-Christophe ✱; Université de Liège - ULiège > Molecular Systems (MolSys) ; WEL Research Institute, Wavre, Belgium
Gioiello, Antimo ; Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
✱ These authors have contributed equally to this work.
Language :
English
Title :
Photooxygenation Reactions of Olefins Under Flow Conditions: An Experimental and In-Silico Study
This project was supported by the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 104 published on 2. 2. 2022 by the Italian Ministry of University and Research (MUR), funded by the European Union \u2013 NextGenerationEU \u2013 Project Title \u201CThermochemiluminescence-based nanoprobes for multiplex prostate cancer biomarkers in personalized medicine (THERMOPROS)\u201D \u2013 CUP J53D23007580006. We also would like to thank Giovanni Battista Minotti and Andrea Nicoziani for their help with the preparation of olefin substrates and realization of the first prototype of photochemical reactor, respectively. Open Access publishing facilitated by Universit\u00E0 degli Studi di Perugia, as part of the Wiley - CRUI-CARE agreement.This project was supported by the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 104 published on 2.\u20092.\u20092022 by the Italian Ministry of University and Research (MUR), funded by the European Union \u2013 NextGenerationEU \u2013 Project Title \u201CThermochemiluminescence\u2010based nanoprobes for multiplex prostate cancer biomarkers in personalized medicine (THERMOPROS)\u201D \u2013 CUP J53D23007580006. We also would like to thank Giovanni Battista Minotti and Andrea Nicoziani for their help with the preparation of olefin substrates and realization of the first prototype of photochemical reactor, respectively. Open Access publishing facilitated by Universit\u00E0 degli Studi di Perugia, as part of the Wiley \u2010 CRUI\u2010CARE agreement.
M. Matsumoto, J. Photochem. Photobiol. C 2004, 5, 27–53.
H. Wynberg, E. W. Meijer, J. C. Hummelen, in Methods in enzymology, Vol. 57 (Eds.: M. A. DeLuca, W. D. McElroy), Academic Press Inc., 1981, pp. 687–689.
P. Bayer, R. Pérez-Ruiz, A. J. von Wangelin, ChemPhotoChem 2018, 2, 559–570.
C. Schweitzer, R. Schmidt, Chem. Rev. 2003, 103, 1685–1758.
A. A. Ghogare, A. Greer, Chem. Rev. 2016, 116, 9994–10034.
V. Nardello-Rataj, P. L. Alsters, J.-M. Aubry, in Liquid phase aerobic oxidation catalysis: Industrial applications and academic perspectives, Chapter 22 (Eds.: S. S. Stahl, P. L. Alsters), Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 369–395.
C. Sambiagio, T. Noël, Trends Chem. 2020, 2, 92–106;
D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116, 10276–10341;
J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025–2052.
C. J. Mallia, I. R. Baxendale, Org. Process Res. Dev. 2016, 20, 327–360.
M. Oelgemöller, N. Hoffman, Org. Biomol. Chem. 2016, 14, 7392–7442;
M. Pagliaro, Chem. Today 2017, 35, 84–85.
Y.-H. Tsai, M. Cattoen, G. Masson, G. Christen, L. Traber, M. Donnard, F. R. Leroux, G. Bentzinger, S. Guizzetti, J.-C. M. Monbaliu, React. Chem. Eng. 2024, 9, 1646–1655;
N. Emmanuel, P. Bianchi, J. Legros, J.-C. M. Monbaliu, Green Chem. 2020, 22, 4105–4115;
N. Emmanuel, C. Mendoza, M. Winter, C. R. Horn, A. Vizza, L. Dreesen, B. Heinrichs, J.-C. M. Monbaliu, Org. Process Res. Dev. 2017, 21, 1435–1438;
R. Radjagobalou, J.-F. Blanco, O. Dechy-Cabaret, M. Oelgemöller, K. Loubière, Chem. Engineer. Proc.: Proc. Intensif. 2018, 130, 214–228;
C. Y. Park, Y. J. Kim, H. J. Lim, J. H. Park, M. J. Kim, S. W. Seoa, C. P. Park, RSC Adv. 2015, 5, 4233–4237;
K. Kaya-Özkiper, K. Mc Carogher, A. Roibu, S. Kuhn, ACS Sustainable Chem. Eng. 2023, 11, 9761–9772;
R. Bannon, G. Morrison, M. Smyth, T. S. Moody, S. Wharry, P. M. C. Roth, G. Gauron, M. Baumann, Org. Process Res. Dev. 2024, 28, 3307–3312.
C. Mendoza, N. Emmanuel, C. A. Páez, L. Dreesen, J.-C. M. Monbaliu, B. Heinrichs, ChemPhotoChem 2018, 2, 890–897.
R. A, Maurya, C. P. Park, D.-P. Kim, Beilstein J. Org. Chem. 2011, 7, 1158–1163;
F. Levesque, P. H. Seeberger, Org. Lett. 2011, 13, 5008–5011;
F. Levesque, P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 1706–1709.
N. Hananya, D. Shabat, Angew. Chem. Int. Ed. 2017, 56, 16454–16463;
O. Green, S. Gnaim, R. Blau, A. Eldar-Boock, R. Satchi-Fainaro, D. Shabat, J. Am. Chem. Soc. 2017, 139, 13243–13248;
O. Green, T. Eilon, N. Hananya, S. Gutkin, C. R. Bauer, D. Shabat, ACS Cent. Sci. 2017, 3, 349–358;
T. Nobeshima, M. Nakakomi, K. Nakamura, N. Kobayashi, Adv. Opt. Mater. 2014, 1, 144–149;
G. Moroni, D. Calabria, A. Quintavalla, M. Lombardo, M. Mirasoli, A. Roda, A. Gioiello, ChemPhotoChem 2022, 6, e202100152;
Y. L. Chen, A. J. H. Spiering, S. Karthikeyan, G. W. M. Peters, E. W. Meijer, R. P. Sijbesma, Nat. Chem. 2012, 4, 559–562;
E. W. Meijer, H. Wynberg, Tetrahedron Lett. 1979, 20, 3997–4000;
L. De Vico, Y. J. Liu, J. W. Krogh, R. Lindh, J. Phys. Chem. A 2007, 111, 8013–8019;
D. J. Vinyard, S. Su, M. M. Richter, J. Phys. Chem. A 2008, 112(37), 8529–8533.
K. R. Kopecky, J. E. Filby, C. Mumford, P. A. Lockwood, J.-Y. Ding, Can. J. Chem. 1975, 53, 1103–1122;
K. R. Kopecky, C. Mumford, Can. J. Chem. 1969, 47, 709–711.
P. Bayera, A. J. von Wangelin, Green Chem. 2020, 22, 2359–2364.
T. Hirano, C. Matsuhashi, J. Photochem. Photobiol., C: Photochem. Rev. 2022, 51, 100483;
J. H. Wieringa, J. Strating, H. Wynberg, W. Adam, Tetrahedron Lett. 1972, 13, 169–172.
K. Gollnick, K. Knutzen-Mies, J. Org. Chem. 1991, 56, 4017–4027.
W. Adam, O. Albrecht, E. Feineis, I. Reuther, C. R. Saha-Möller, P. Seufert-Baumbach, D. Wild, Liebigs Ann. Chem. 1991, 1991, 33–40.
The area under the corresponding pick was not well solved. This justifies that the sum of all products percentages exceeds 100 %.
M. Matsumoto, T. Ishihara, N. Watanabe, T. Hiroshima, Tetrahedron Lett. 1999, 40, 4571–4574.
E. L. Bastos, P. Farahani, E. J. H. Bechara, W. J. Baader, J. Phys. Org. Chem. 2017, 30, e3725.
M. Bobrowski, A. Liwo, S. Ołdziej, D. Jeziorek, T. Ossowski, J. Am. Chem. Soc. 2000, 122, 8112–8119;
A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243–1255.
L. A. Andronico, A. Quintavalla, M. Lombardo, M. Mirasoli, M. Guardigli, C. Trombini, A. Roda, Chem. Eur. J. 2016, 22, 18156–18168.
Schrodinger Release 2023–1, Macromodel v13.9, Schrödinger, LLC, New York, NY, 2023.
Schrodinger Release 2023–1, Macromodel v13.9, Schrödinger, LLC, New York, NY, 2023.