Climate change; Crassostrea sikamea; Distribution pattern; Ecological niche; oyster
Abstract :
[en] Global climate change drives species redistribution, threatening biodiversity and ecosystem heterogeneity. The Kumamoto oyster, Crassostrea sikamea (Amemiya, 1928), one of the most promising aquaculture species because of its delayed reproductive timing, was once prevalent in southern China. In this study, an ensemble species distribution model was employed to analyze the distribution range shift and ecological niche dynamics of C. sikamea along China's coastline under the current and future climate scenarios (RCP 2.6-8.5 covering 2050 s and 2100 s). The model results indicated that the current habitat distribution for C. sikamea consists of a continuous stretch extending from the coastlines of Hainan Province to the northern shores of Jiangsu Province. By the 2050 s, the distribution range will stabilize at its southern end along the coast of Hainan Province, while expanding northward to cover the coastal areas of Shandong Province, showing a more dramatic trend of contraction in the south and invasion in the north by the 2100 s. In RCP8.5, the southern end retracts to the coasts of Guangdong, whereas the northern end covers all of China's coastal areas north of 34°N. C. sikamea can maintain relatively stable ecological niche characteristics, while it may occupy different ecological niche spaces under future climate conditions. Significant niche expansion will occur in lower temperature. We concluded C. sikamea habitats are susceptible to climate change. The rapid northward expansion of C. sikamea may open new possibilities for oyster farming in China, but it will also have important consequences for the ecological balance and biodiversity of receiving areas. It's imperative that we closely examine and strategize to address these repercussions for a win-win situation.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Liu, Bingxian; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China, University of Chinese Academy of Sciences, Beijing 100049, PR China
Liu, Zhenqiang; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, PR China
Li, Cui; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China, University of Chinese Academy of Sciences, Beijing 100049, PR China
Yu, Haolin ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; University of Chinese Academy of Sciences, Beijing 100049, PR China, Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
Wang, Haiyan; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China, University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address: haiyanwang@qdio.ac.cn
Language :
English
Title :
Geographical distribution and ecological niche dynamics of Crassostrea sikamea (Amemiya, 1928) in China's coastal regions under climate change.
This work was partly supported by grants of the National Natural Science Foundation of China ( 42076092 , 41776179 ), National Key Research and Development Program of China ( 2022YFD2401301 , 2022FY100304 ), Strategic Priority Research Program of the Chinese Academy of Sciences ( XDB42000000 ), Earmarked Fund for Modern Agro-industry Technology Research System ( CARS-47 ).
Adhikari, B., Subedi, S.C., Bhandari, S., et al. Climate-driven decline in the habitat of the endemic spiny babbler (Turdoides nipalensis). Ecosphere, 14(6), 2023, e4584, 10.1002/ecs2.4584.
Ahmed, N., Thompson, S., Glaser, M., Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 63 (2019), 159–172, 10.1007/s00267-018-1117-3.
Allouche, O., Tsoar, A., Kadmon, R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43 (2006), 1223–1232, 10.1111/j.1365-2664.2006.01214.x.
Amarasekare, P., Simon, M.W., Latitudinal directionality in ectotherm invasion success. Proc. Biol. Sci., 287(1920), 2020, 20191411, 10.1098/rspb.2019.1411.
Araújo, M.B., New, M.G., Ensemble forecasting of species distributions. Trends Ecol. Evol. 22 (2007), 42–47, 10.1016/j.tree.2006.09.010.
Assis, J., Tyberghein, L., Bosch, S., et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27 (2018), 277–284, 10.1111/geb.12693.
Atwater, D.Z., Ervine, C., Barney, J.N., Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2 (2018), 34–43, 10.1038/s41559-017-0396-z.
Barbet-Massin, M., Jiguet, F., Albert, C.H., et al. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3 (2012), 327–338, 10.1111/j.2041-210X.2011.00172.x.
Bayne, B.L., The effects of stress and pollution on marine animals. Water Res., 19(8), 1985, 1080, 10.1016/0043-1354(85)90387-2.
Berger, V.J., Kharazova, A.D., Mechanisms of salinity adaptations in marine molluscs. Springer 355 (1997), 115–126, 10.1007/978-94-017-1907-0_12.
Bozinovic, F., Ferri-Yanez, F., Naya, H., et al. Thermal tolerances in rodents: species that evolved in cold climates exhibit a wider thermoneutral zone. Evol. Ecol. Res. 16:2 (2014), 143–152.
Breiman, L., Statistical modeling: the two cultures. Stat. Sci. 16 (2001), 199–215, 10.1214/ss/1009213726.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
Breiman, L., Friedman, J.H., Olshean, R.A., et al. Classification and Regression Trees. 1984, Chapman and Hall, London, 10.1002/widm.8.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21 (2012), 481–497, 10.1111/j.1466-8238.2011.00698.x.
Brown, J.L., SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5 (2014), 694–700, 10.1111/2041-210X.12200.
Buisson, L., Thuiller, W., Casajus, N., et al. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 16 (2010), 1145–1157, 10.1111/j.1365-2486.2009.02000.x.
Bulleri, F., Airoldi, L., Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the North Adriatic Sea. J. Appl. Ecol. 42 (2005), 1063–1072, 10.1111/j.1365-2664.2005.01096.x.
Byers, J., Competition in marine invasions. Rilov, G., Crooks, J., (eds.) Biological Invasions in Marine Ecosystems, 2009, Springer, Berlin.
Camara, M.D., Davis, J.M., Sekino, M., et al. The Kumamoto oyster Crassostrea sikamea is neither rare nor threatened by hybridization in the northern Ariake Sea. Japan, 2008, 10.2983/0730-8000(2008)27[313:TKOCSI]2.0.CO;2.
Chen, H., Xin, L.S., Song, X.R., et al. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. Fish Shellfish. Immun. 64 (2017), 297–307, 10.1016/j.fsi.2017.03.020.
Chen, I.C., Shiu, H.J., Benedick, S., et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. P. Natl. Acad. Sci. 106:5 (2009), 1479–1483, 10.1073/pnas.0809320106.
Chen, I.C., Hill, J.K., Ohlemuller, R., et al. Rapid range shifts of species associated with high levels of climate warming. Science 333:6045 (2011), 1024–1026, 10.1126/science.1206432.
Chen, H., Xin, L.S., Wang, L., et al. Ca2+/calmodulin-NOS/NO-TNFs pathway hallmarks the inflammation response of oyster during aerial exposure. Front. Mar. Sci., 7, 2021, 10.3389/fmars.2020.603825.
Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10 (2009), 235–251, 10.1111/j.1467-2979.2008.00315.x.
Cohen, J., A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20 (1960), 37–46, 10.1177/001316446002000104.
Cowen, R.K., Sponaugle, S., Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1 (2009), 443–466, 10.1146/annurev.marine.010908.163757.
Crooks, J.A., The role of exotic marine ecosystem engineers. Rilov, G., Crooks, J.A., (eds.) Biological Invasions of Marine Ecosystems, 2009, Springer, Berlin.
Cunze, S., Kochmann, J., Klimpel, S., Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. Pest Manag. Sci. 76 (2020), 1814–1822, 10.1002/ps.5710.
Davis, M.B., Shaw, R.G., Range shifts and adaptive responses to quaternary climate change. Science 292:5517 (2001), 673–679, 10.1126/science.292.5517.673.
Di Cola, V., Broennimann, O., Petitpierre, B., et al. Ecospat: an R package to support spatial analyses and modelling of species niches and distributions. Ecography 40 (2017), 774–787, 10.1111/ecog.02671.
Diaz-Carballido, P.L., Mendoza-González, G., Yañez-Arenas, C.A., et al. Evaluation of shifts in the potential future distributions of Carcharhinid sharks under different climate change scenarios. Front. Mar. Sci., 8, 2022, 10.3389/fmars.2021.745501.
Dick, J.T.A., Laverty, C., Lennon, J.J., et al. Invader relative impact potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54 (2017), 1259–1267, 10.1111/1365-2664.12849.
Dong, Y.W., Wang, H.S., Han, G.D., et al. The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast. PloS One, 7(4), 2012, e36178, 10.1371/journ al.pone.0036178.
Dong, Y.W., Huang, X.W., Wang, W., et al. The marine ‘Great Wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22 (2016), 731–744, 10.1111/ddi.12443.
Dong, J.Y., Hu, C.Y., Zhang, X.M., et al. Selection of aquaculture sites by using an ensemble model method: a case study of Ruditapes philippinarums in moon Lake. Aquaculture, 519, 2020, 734897, 10.1016/j.aquaculture.2019.734897.
Dormann, C.F., Elith, J., Bacher, S., et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 (2013), 27–46.
Doubleday, Z.A., Clarke, S., Li, X., et al. Assessing the risk of climate change to aquaculture: a case study from Southeast Australia. Aquacult. Environ. Interact. 3 (2013), 163–175, 10.3354/aei00058.
Dukes, J.S., Mooney, H.A., Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14:4 (1999), 135–139, 10.1016/S0169-5347(98)01554-7.
Easterling, D.R., Meehl, G.A., Parmesan, C., et al. Climate extremes: observations, modeling, and impacts. Science 289 (2000), 2068–2074, 10.1126/science.289.5487.2068.
Elith, J.H., Graham, C., Anderson, R., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 (2006), 129–151, 10.1111/j.2006.0906-7590.04596.x.
Feary, D.A., Pratchett, M.S., J Emslie, M., et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15:4 (2014), 593–615, 10.1111/faf.12036.
Fernández, M., Hamilton, H., Ecological niche transferability using invasive species as a case study. PloS One, 10(3), 2015, e0119891, 10.1371/journal.pone.0119891.
Gallardo, B., Zieritz, A., Aldridge, D.C., The importance of the human footprint in shaping the global distribution of terrestrial. Freshwater and Marine Invaders. PLOS ONE., 10(5), 2015, e0125801, 10.1371/journal.pone.0125801.
Geburzi, J.C., Ewers-Saucedo, C., Brandis, D., et al. Complex patterns of secondary spread without loss of genetic diversity in invasive populations of the Asian shore crab Hemigrapsus takanoi (Decapoda) along European coasts. Mar. Biol., 167, 2020, 180 (2020) https://doi.org/10.1007/s00227-020-03790-y.
Gordon, D.G., Blanton, N.E., Nosho, T.Y., Heaven on the Half Shell: The Story of the Northwest's Love Affair with the Oyster. 2003, Washington Sea Grant Program and WestWinds Press, Seattle, Washington, and Portland, Oregon.
Grenouillet, G., Buisson, L., Casajus, N., et al. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34 (2011), 9–17, 10.1111/j.1600-0587.2010.06152.x.
Guisan, A., Thuiller, W., Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:9 (2005), 993–1009, 10.1111/j.1461-0248.2005.00792.x.
Guisan, A., Petitpierre, B., Broennimann, O., et al. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29 (2014), 260–269, 10.1016/j.tree.2014.02.009.
Haley, B.A., Hales, B., Brunner, E.L., et al. Mechanisms to explain the elemental composition of the initial aragonite shell of larval oysters. Geochem. Geophys. Geosyst. 19 (2018), 1064–1079, 10.1002/2017GC007133.
Hanley, J.A., McNeil, B.J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:1 (1982), 29–36, 10.1148/radiology.143.1.7063747.
Hastie, T., Tibshirani, R., Buja, A., Flexible discriminant-analysis by optimal scoring. J. Am. Stat. Assoc. 89 (1994), 1255–1270, 10.2307/2290989.
Hill, M.P., Gallardo, B., Terblanche, J.S., A global assessment of climatic niche shifts and human influence in insect invasions. Glob. Ecol. Biogeogr. 26 (2017), 679–689, 10.1111/geb.12578.
Hong, J.S., Sekino, M., Sato, S., Molecular species diagnosis confirmed the occurrence of Kumamoto oyster Crassostrea sikamea in Korean waters. Fish. Sci. 78:2 (2012), 259–267, 10.1007/s12562-011-0453-5.
Hu, L.S., Dong, Y.W., Northward shift of a biogeographical barrier on China's coast. Divers. Distrib. 28 (2022), 318–330, 10.1111/ddi.13463.
Hu, L.S., Dong, Y.W., Multiple genetic sources facilitate the northward range expansion of an intertidal oyster along China's coast. Ecol. Appl., e2764, 2022, 10.1002/eap.2764.
Hu, L.S., Zhang, Z., Wang, H.Y., et al. Molecular phylogeography and population history of Crassostrea sikamea (Amemiya, 1928) based on mitochondrial DNA. J. Exp. Mar. Biol. Ecol. 503 (2018), 23–30, 10.1016/j.jembe.2017.11.004.
Hu, Z.J., Guo, K., Jin, S.L., et al. The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan plateau based on MaxEnt model and geographic information system. Theor. Appl. Climatol. 135:1 (2019), 375–390, 10.1007/s00704-018-2373-0.
Jo, Q., Hur, Y., Cho, K., et al. Potential influence of climate change on shellfish aquaculture system in the temperate region. Korean J. Malacol. 28:3 (2012), 277–291, 10.9710/kjm.2012.28.3.277.
King, N.G., Wilmes, S.B., Smyth, D., et al. Climate change accelerates range expansion of the invasive non-native species, the Pacific oyster, Crassostrea gigas. ICES J. Mar. Sci., 78(1), 2021, 10.1093/icesjms/fsaa189.
Kinne, O., The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity relations. Oceanogr. Mar. Biol. Annual Review. 2:47 (1964), 597–602, 10.1590/S0085-56262003000400010.
Kripa, V., Jenni, B., Chinnadurai, S., et al. Effects of acidification of meroplanktonic oyster settlement in a tropical estuary. Indian J. Mar. Sci. 43:9 (2014), 1675–1681.
Lek, S., Guegan, J.F., Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120 (1999), 65–73, 10.1016/S0304-3800(99)00092-7.
Lenoir, J., Bertrand, R., Comte, L., et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4 (2020), 1044–1059, 10.1038/s41559-020-1198-2.
Li, Y.M., Liu, X., Li, X.P., et al. Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Glob. Ecol. Biogeogr. 23 (2014), 1094–1104, 10.1111/geb.12191.
Li, C., Haws, M., Wang, H.Y., et al. Taxonomic classification of three oyster (Ostreidae) species from Myanmar. J. Shellfish. Res. 36 (2017), 365–371, 10.2983/035.036.0209.
Li, Y.X., Shao, W.H., Huang, S.Q., et al. Prediction of suitable habitats for Sapindus delavayi based on the MaxEnt model. Forests, 13, 2022, 1611, 10.3390/f13101611.
Liu, J.Y., Status of marine biodiversity of the China seas. PloS One, 8(1), 2013, e50719, 10.1371/journ al.pone.0050719.
Liu, C.L., Wolter, C., Xian, W.W., et al. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. U. S. A. 117 (2020), 23643–23651, 10.1073/pnas.2004289117.
Liu, S., Xue, Q., Xu, H.Q., et al. Identification of Main oyster species and comparison of their genetic diversity in Zhejiang coast, south of Yangtze River estuary. Front. Mar. Sci., 8, 2021, 662515, 10.3389/fmars.2021.662515.
Liu, B.X., Liu, Z.Q., Chen, Y., Potential distribution of Crassostrea sikamea (Amemiya, 1928) along coastal China under global climate change. Glob. Ecol. Conserv., 50, 2024, e0284, 10.1016/j.gecco.2024.e02843.
Ma, B., Sun, J., Predicting the distribution of Stipa purpurea across the Tibetan plateau via the Maxent model. BMC Ecol., 18(1), 2018, 10, 10.1186/s12898-018-0165-0.
Ma, H.T., Lv, W.G., Qin, Y.P., et al. Aquaculture potential of two Kumamoto oyster (Crassostrea sikamea) populations and their reciprocal hybrids in southern China. Aquaculture, 546, 2022, 737301, 10.1016/j.aquaculture.2021.737301.
Mahu, E., Sanko, S., Kamara, A., et al. Climate resilience and adaptation in west African oyster fisheries: an expert-based assessment of the vulnerability of the oyster Crassostrea tulipa to climate change. Fishes, 7, 2022, 205, 10.3390/fishes7040205.
Marmion, M., Parviainen, M., Luoto, M., et al. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15 (2009), 59–69, 10.1111/j.1472-4642.2008.00491.x.
McCullagh, P., Nelder, J., Generalized Linear Models. 2nd edition, 1989, Chapman and Hall, London, 10.1201/9780203753736.
McPherson, J., Jetz, W., Rogers, D.J., The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact. J. Appl. Ecol. 41:5 (2004), 811–823, 10.1111/j.0021-8901.2004.00943.x.
Metian, M., Pouil, S., Dupuy, C., et al. Influence of food (ciliate and phytoplankton) on the trophic transfer of inorganic and methylmercury in the Pacific cupped oyster Crassostrea gigas. Environ. Pollut., 257, 2020, 113503, 10.1016/j.envpol.2019.113503.
Moss, R.H., Edmonds, J.A., Hibbard, K.A., et al. The next generation of scenarios for climate change research and assessment. Nature 463 (2010), 747–756, 10.1038/nature08823.
Ni, G., Li, Q., Kong, L.F., et al. Comparative phylogeography in marginal seas of the northwestern Pacific. Mol. Ecol. 23:3 (2014), 534–548, 10.1111/mec.12620.
Ni, G., Kern, E., Dong, Y.W., et al. More than meets the eye: the barrier effect of the Yangtze River outflow. Mol. Ecol. 26:18 (2017), 4591–4602, 10.1111/mec.14235.
O'Connor, M.I., Bruno, J.F., Gaines, S.D., et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. 104:4 (2007), 1266–1271, 10.1073/pnas.06034 22104.
Ouyang, X.H., Pan, J.L., Wu, Z.T., et al. Predicting the potential distribution of Campsis grandiflora in China under climate change. Environ. Sci. Pollut. Res. 29 (2022), 63629–63639, 10.1007/s11356-022-20256-4.
Padilla, D.K., Context-dependent impacts of a non-native ecosystem engineer, the Pacific oyster Crassostrea gigas. Integr. Comp. Biol. 50:2 (2010), 213–225, 10.1093/icb/icq080.
Palumbi, S.R., Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. S. 25:1 (1994), 547–572, 10.1146/annurev.es.25.110194.002555.
Parmesan, C., Yohe, G., A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:6918 (2003), 37–42, 10.1038/nature01286.
Petitpierre, B., Kueffer, C., Broennimann, O., et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335 (2012), 1344–1348, 10.1126/science.1215933.
Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions. Ecol. Model. 190 (2006), 231–259, 10.1016/j.ecolmodel.2005.03.026.
Pili, A.N., Tingley, R., Sy, E.Y., et al. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep., 10, 2020, 7972, 10.1038/s41598-020-64568-2.
Pinsky, M.L., Selden, R.L., Kitchel, Z.J., Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12 (2020), 153–179, 10.1146/annurev-marin e-01041 9-010916.
Platts, P.J., Mason, S.C., Palmer, G., et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep-uk., 9, 2019, 15039, 10.1038/s41598-019-51582-2.
Porter, W.P., Kearney, M., Size, shape, and the thermal niche of endotherms. P. Natl. Acad. Sci. Usa. 106 (2009), 19666–19672, 10.1073/pnas.0907321106.
Qin, Y.P., Noor, Z., Li, X.Y., et al. Tetraploid induction of Crassostrea hongkongensis and C. Sikamea by inhibiting the polar body 1 release in diploid fertilized eggs. Mar. Life Sci. Technol. 3 (2021), 463–473, 10.1007/s42995-021-00107-w.
Reece, K.S., Cordes, J.F., Stubbs, J.B., et al. Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Mar. Biol. 153 (2008), 709–721, 10.1007/s00227-007-0846-2.
Ridgeway, G., The state of boosting. Comput. Sci. Stat., 1999, 172–181.
Robinson, A., Gonadal cycle of Crassostrea gigas kumamoto (Thunberg) in Yaquina Bay, Oregon and optimum conditions for broodstock oysters and larval culture. Aquaculture 106 (1992), 89–97, 10.1016/0044-8486(92)90252-G.
Robinson, L.M., Elith, J., Hobday, A.J., et al. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20 (2011), 789–802, 10.1111/j.1466-8238.2010.00636.
Rosenzweig, C., Karoly, D.J., Vicarelli, M., et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453 (2008), 353–357, 10.1038/nature06937.
Ruiz-Navarro, A., Gillingham, P.K., Britton, J.R., Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. Biol. Conserv. 203 (2016), 33–42, 10.1016/j.biocon.2016.08.021.
Silva, D.P., Aguiar, A.G., Simiao-Ferreira, J., Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J. Insect Conserv. 20 (2016), 611–620, 10.1007/s10841-016-9892-8.
Simon, P., Marc, M., Christine, D., et al. Diet variably affects the trophic transfer of trace elements in the oyster Crassostrea gigas. Mar. Environ. Res., 161, 2020, 105124, 10.1016/j.marenvres.2020.105124.
Sorte, C.J.B., Williams, S.L., Carlton, J.T., Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19 (2010), 303–316, 10.1111/j.1466-8238.2009.00519.x.
Spence, A.R., Tingley, M.W., The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43:11 (2020), 1571–1590, 10.1111/ecog.05170.
Strubbe, D., Matthysen, E., Patterns of niche conservatism among non-native birds in Europe are dependent on introduction history and selection of variables. Biol. Invasions 16 (2014), 759–764, 10.1007/s10530-013-0539-3.
Strubbe, D., Broennimann, O., Chiron, F., et al. Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. Glob. Ecol. Biogeogr. 22 (2013), 962–970, 10.1111/geb.12050.
Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design. B. Am. Meteorol. Soc. 93 (2012), 485–498, 10.1175/BAMS-D-11-00094.1.
Thomas, C.D., Climate, climate change and range boundaries. Divers. Distrib. 16 (2010), 488–495, 10.1111/j.1472-4642.2010.00642.x.
Thuiller, W., Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol. 10 (2004), 2020–2027, 10.1111/j.1365-2486.2004.00859.x.
Thuiller, W., Lafourcade, B., Engler, R., et al. BIOMOD a platform for ensemble forecasting of species distributions. Ecography 32 (2009), 369–373, 10.1111/j.1600-0587.2008.05742.x.
Thuiller, W., Georges, D., Engler, R. (2016). Ensemble platform for species distribution modeling package biomod2 version3.3. https://CRAN.Rproject.org/package=biomod2. Accessed 25 Feb 2018.
Thuiller, W., Georges, D., Gueguen, M., et al. (2023). Biomod2: Ensemble Platform for Species Distribution Modeling. https://cran.r-project.org/web/packages/biomod2/index.html (accessed 16 June 2003).
Tingley, R., Vallinoto, M., Sequeira, F., et al. Realized niche shift during a global biological invasion. P. Natl. Acad. Sci. Usa. 111:28 (2014), 10233–10238, 10.1073/pnas.1405766111.
Vasconcelos, T.S., Doro, J.L.P., Assessing how habitat loss restricts the geographic range of Neotropical anurans. Ecol. Res. 31 (2016), 913–921, 10.1007/s11284-016-1401-8.
Veloz, S.D., Williams, J.W., Blois, J.L., et al. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Change. Biol. 18 (2012), 1698–1713, 10.1111/j.1365-2486.2011.02635.x.
Vitousek, P.M., D'Antonio, C.M., Loope, L., et al. Introduced species: a significant component of human caused global change. New. Zeal. J. Ecol. 21 (1997), 1–16.
Wang, H.Y., Qian, L.M., Wang, A.M., et al. Occurrence and distribution of Crassostrea sikamea (Amemiya 1928) in China. J. Shellfish. Res. 32:2 (2013), 439–446, 10.2983/035.032.0224.
Vuuren, D.P.V., Elzen, M.D., Lucas, P.L., et al. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim. Change 81:2 (2007), 119–159, 10.1007/S10584-006-9172-9.
Wang, J., Ganmanee, M., Shau-Hwai, A.T., et al. Pleistocene events and present environmental factors have shaped the phylogeography of the intertidal limpet Cellana toreuma (Reeve, 1855) (Gastropoda: Nacellidae) in Southeast Asia and China. J. Mollus. Stud. 82:3 (2016), 378–390, 10.1093/mollus/eyv071.
Wang, J., Yan, H.Y., Cheng, Z.Y., et al. Recent northward range extension of Nerita yoldii (Gastropoda: Neritidae) on artificial rocky shores in China. J. Mollus. Stud. 84:4 (2018), 345–353, 10.1093/mollu s/eyy042.
Wang, T., Li, Q., Effects of salinity and temperature on growth and survival of juvenile of Kumamoto oysters (Crassostrea sikamea). Oceanol. Limnol. Sin. 48 (2017), 297–302, 10.11693/hyhz20160800169.
Wang, W., Wang, J., Choi, F.M.P., et al. Global warming and artificial shorelines reshape seashore biogeography. Glob. Ecol. Biogeogr. 29:2 (2020), 220–231, 10.1111/geb.13019.
Wardle, D.A., Bardgett, R.D., Callaway, R.M., et al. Terrestrial ecosystem responses to species gains and losses. Science 332:6035 (2011), 1273–1277, 10.1126/science.1197479.
Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62 (2008), 2868–2883, 10.1111/j.1558-5646.2008.00482.x.
Wei, J.F., Zhang, H.F., Zhao, W.Q., et al. Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PloS One, 12(7), 2017, e0180913, 10.1371/journal.pone.0180913.
Worthington, T.A., Zhang, T., Logue, D.R., et al. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol. Model. 342 (2016), 1–18, 10.1016/j.ecolmodel.2016.09.016.
Wu, H., Gu, J.H., Zhu, P., Winter counter-wind transport in the inner southwestern Yellow Sea. J. Geophys. Res-oceans.123 (2018), 411–436, 10.1002/2017JC013403.
Xiao, D.P., Liu, D.L., Wang, B., et al. Climate change impact on yields and water use of wheat and maize in the North China plain under future climate change scenarios. Agr. Water. Manage., 238, 2020, 106238, 10.1016/j.agwat.2020.106238.
Xu, Y., Sui, J.X., Ma, L., et al. Temporal variation of macrobenthic community zonation over nearly 60 years and the effects of latitude and depth in the southern Yellow Sea and East China Sea. Sci. Total Environ., 739, 2020, 139760, 10.1016/j.scito tenv.2020.139760.
Yuan, D.L., Li, Y., Wang, B., et al. Coastal circulation in the southwestern Yellow Sea in the summers of 2008 and 2009. Cont. Shelf Res. 143 (2017), 101–117, 10.1016/J.CSR.2017.01.022.
Zhang, J.M., Song, M.L., Li, Z.J., et al. Effects of climate change on the distribution of Akebia quinate. Front. Ecol. Evol., 9, 2021, 10.3389/fevo.2021.752682.
Zhang, Y.L., Zhang, C.L., Xu, B.D., et al. Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecol. Indic., 2022, 10.1016/j.ecolind.2022.108826.
Zhang, Z.X., Xu, S.Y., Capinha, C., et al. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecol. Indic. 104 (2019), 333–340, 10.1016/j.ecolind.2019.05.023.
Zhang, Z.X., Capinha, C., Karger, D.N., et al. Impacts of climate change on geographical distributions of invasive ascidians. Mar. Environ. Res., 159, 2020, 104993, 10.1016/j.marenvres.2020.104993.
Zhuo, Z., Xu, D., Pu, B., et al. Predicting distribution of Zanthoxylum bungeanum maxim. In China. BMC Ecol., 20, 2020, 46, 10.1186/s12898-020-00314-6.