Global climate change; MaxEnt; Oyster; Suitable distribution
Abstract :
[en] Global climate change has led to ocean warming, acidification, hypoxia, and alterations in the biogeochemical circulation, thereby influencing the distribution, abundance, and population patterns of marine organisms. Particularly, oysters, which tend to attach to rocks in intertidal zones, may be more vulnerable to climate change. The Kumamoto oyster, Crassostrea sikamea (Amemiya, 1928), is renowned for its nutritional content, breeding benefits, and ecosystem restoration abilities. Previous research has demonstrated that the geographical range of C. sikamea in China has gradually shifted. In this study, the Maximum Entropy (MaxEnt) model was employed to predict the suitability for C. sikamea under different climate scenarios. We utilized first-hand data collected by our research team over the past 14 years, which consisted of 3030 C. sikamea samples from seven provinces in China. The contribution rate of the environmental variables and the jackknife test revealed that salinity (13–21PSS) and temperature (24.6–25.5 °C) are the primary factors influencing the distribution of C. sikamea. The future distribution shows a south-to-north migration pattern triggered by increased sea temperature, resulting in increased suitability at higher latitudes. The migratory effect is more dramatic under the high-emission scenario (Representative Concentration Pathways 8.5 (RCP8.5)) compared to medium-(RCP4.5/RCP6.0) and low-emission scenarios (RCP2.6) and becomes increasingly evident over time. Model predictions indicated that C. sikamea could maintain its suitability under all climate scenarios until the 2050s. However, by the 2100s, the suitability is expected to shift northward beyond the 33–34°N boundary under RCP2.6, RCP6.0, and RCP8.5, extending to the northern coast of Jiangsu. The suitability of C. sikamea within its habitat may experience a significant decline by the 2050s, followed by a gradual recovery over the next 50 years. The potential northward migration of C. sikamea presents new prospects for oyster aquaculture and artificial reefs establishment in China. However, this migration will inevitably lead to significant impacts on the invaded ecosystems and overall biodiversity.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Liu, Bingxian; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Liu, Zhenqiang; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
Chen, Ya; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Lu, Ruijing; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
Li, Cui; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Ma, Peizhen; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Yu, Haolin ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; University of Chinese Academy of Sciences, Beijing, China ; Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Zhang, Zhen; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Wang, Haiyan; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao, China ; University of Chinese Academy of Sciences, Beijing, China
Language :
English
Title :
Potential distribution of Crassostrea sikamea (Amemiya, 1928) along coastal China under global climate change
This work was partly supported by grants of the National Natural Science Foundation of China ( 42076092 , 41776179 ), National Key R&D Program of China ( 2022YFD2401301 , 2022FY100304 ), Strategic Priority Research Program of the Chinese Academy of Sciences ( XDB42000000 ), Earmarked Fund for Modern Agro-industry Technology Research System ( CARS-47 ).
Ayre, D.J., Minchinton, T.E., Perrin, C., Does life his-tory predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18:9 (2009), 1887–1903, 10.1111/j.1365-294x.2009.04127.x.
Babcock, E.A., Pikitch, E.K., McAllister, M.K., Apostolaki, P., Santora, C., A perspective on the use of spatialized indicators for ecosystem-based fishery management through spatial zoning. Ices J. Mar. Sci. 62 (2005), 469–476, 10.1016/J.ICESJMS.2005.01.010.
Baldwin, R.A., Use of Maximum Entropy Modeling in Wildlife Research. Entropy 11 (2009), 854–866, 10.3390/e11040854.
Bayne, B.L., The Effects of Stress and Pollution on Marine Animals. Water Res, 19(8), 1985, 1080, 10.1016/0043-1354(85)90387-2.
Belkin, I.M., Rapid warming of large marine ecosystems. Prog. Oceanogr. 81:1-4 (2009), 207–213, 10.1016/j.pocean.2009.04.011.
Berger, V.J., Kharazova, A.D., Mechanisms of salinity adaptations in marine molluscs, 355, 1997, Springer, 115–126, 10.1007/978-94-017-1907-0_12.
Brown, S.C., Wigley, T.M., Otto-Bliesner, B.L., Rahbek, C., Fordham, D.A., Persistent quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Chang. 10 (2020), 244–248, 10.1038/s41558-019-0682-7.
Bulleri, F., Airoldi, L., Artificial Marine Structures Facilitate the Spread of a Non-indigenous Green Alga, Codium fragile ssp. tomentosoides, in the North Adriatic Sea. J. Appl. Ecol. 42 (2005), 1063–1072, 10.1111/j.1365-2664.2005.01096.x.
Camara, M.D., Davis, J.P., Sekino, M., Hedgecock, D., Li, G., Langdon, C.J., Evans, S., The Kumamoto oyster Crassostrea sikamea is neither rare nor threatened by hybridization in the northern Ariake Sea. Jpn. J. Shell Res 27 (2008), 313–322, 10.2983/0730-8000(2008)27[313:TKOCSI]2.0.CO;2.
Chen, H., Liu, G., Zooplankton community structure in the Yellow Sea and East China Sea in autumn. Braz. J. Oceanogr. 63:4 (2015), 455–468, 10.1590/S1679-87592015094506304.
Cressman, K.A., Posey, M.H., Mallin, M.A., Leonard, L.A., Alphin, T.D., Effects of oyster reefs on water quality in a tidal creek estuary. J. Shellfish Res 22:3 (2003), 753–762.
Dong, Y.W., Huang, X.W., Wang, W., Li, Y., Wang, J., The Marine ‘Great Wall’ of China: Local- and Broad-Scale Ecological Impacts of Coastal Infrastructure on Intertidal Macrobenthic Communities. Divers. Distrib. 22 (2016), 731–744, 10.1111/ddi.12443.
Dong, Z., Sun, T., Combined effects of ocean acidification and temperature on planula larvae of the moonhp jellyfish Aurelia coerulea. Mar. Environ. Res 139:1 (2018), 144–150, 10.1016/j.marenvres.2018.05.015.
Duan, R., Kong, X., Huang, M., Fan, W., Wang, Z., The Predictive Performance and Stability of Six Species Distribution Models. PLOS ONE, 9(11), 2014, e112764, 10.1371/journal.pone.0112764.
Elith, J., Leathwick, J.R., Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40 (2009), 667–697, 10.1146/annurev.ecolsys.110308.120159.
Elith, J., Graham, H., C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, J., Huettmann, R., F., R. Leathwick, J., Lehmann, A., Novel methods improve prediction of species' distributions from occurrence data. Ecography 29 (2006), 129–151, 10.1111/j.2006.0906-7590.04596.x.
Fielding, A., Bell, J., A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24 (1997), 38–49, 10.1017/S0376892997000088.
Gong, Z., Zhang, C., Wan, L., Zuo, J., Tidal level response to sea-level rise in the Yangtze estuary. China Ocean Eng., 26(1), 2012, 10.1007/s13344-012-0008-2.
Gordon, D.G., Blanton, N.E., Nosho, T.Y., 2003 Heaven on the half shell: the story of the Northwest's love affair with the oyster. 2003. Washington Sea Grant Program and WestWinds Press, Seattle, Washington, and Portland, Oregon.
Guisan, A., Thuiller, W., Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:9 (2005), 993–1009, 10.1111/j.1461-0248.2005.00792.x.
Haley, B.A., Hales, B., Brunner, E.L., Kovalchik, K., Waldbusser, G.G., Mechanisms to explain the elemental composition of the initial aragonite shell of larval oysters. Geochem., Geophys., Geosystems 19 (2018), 1064–1079, 10.1002/2017GC007133.
Hoegh-Guldberg, O., Bruno, J.F., The impact of climate change on the world's marine ecosystems. Science 328 (2010), 1523–1528, 10.1126/science.1189930.
Hong, J.S., Sekino, M., Sato, S., Molecular species diagnosis confirmed the occurrence of Kumamoto oyster Crassostrea sikamea in Korean waters. Fish. Sci. 78:2 (2012), 259–267, 10.1007/s12562-011-0453-5.
Hu L., 2016. Genetic Divergence of Crassostrea and Genetic Diversity of Different Populations of Ruditapes philippinarum. Diss. The University of Chinese Academy of Sciences. (In Chinese with English abstract).
Hu, L., Zhang, Z., Wang, H., Zhang, T., Molecular phylogeography and population history of Crassostrea sikamea (Amemiya, 1928) based on mitochondrial DNA. J. Exp. Mar. Biol. Ecol. 503 (2018), 23–30, 10.1016/j.jembe.2017.11.004.
Hu, L.S., Dong, Y.W., Multiple genetic sources facilitate the northward range expansion of an intertidal oyster along China's coast. Ecol. Appl., 2022, e2764, 10.1002/eap.2764.
Ivanina, A.V., Dickinson, G.H., Matoo, O.B., Bagwe, R., Dickinson, A., Beniash, E., Sokolova, I.M., Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comp. Biochem. Phys. A. 166:1 (2013), 101–111, 10.1016/j.cbpa.2013.05.016.
Jennings, S., Indicators to support an ecosystem approach to fisheries. Fish Fish 6 (2005), 212–232, 10.1111/j.1467-2979.2005.00189.x.
Jose, V.S., Sejian, V., Bagath, M., Ratnakaran, A.P., Lees, A.M., Al-Hosni, Y.A.S., Sullivan, M., Bhatta, R., Gaughan, J.B., Modeling of greenhouse gas emission from livestock. Front. Env. Sci., 4, 2016, 27, 10.3389/fenvs.2016.00027.
Kaky, E., Nolan, V., Alatawi, A., Gilbert, F., A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform., 60, 2020, 101150, 10.1016/j.ecoinf.2020.101150.
Keeling, R.F., Körtzinger, A., Gruber, N., Ocean Deoxygenation in a Warming World. Annu. Rev. Mar. Sci. 2:1 (2010), 199–229, 10.1146/annurev.marine.010908.163855.
Kinne, O., The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity relations. Oceanogr. Mar. Biol. Annu. Rev. 2:47 (1964), 597–602, 10.1590/S0085-56262003000400010.
Kripa, V., Jenni, B., Chinnadurai, S., Khambadkar, L.R., Prema, D., Mohamed, K.S., Effects of acidification of meroplanktonic oyster settlement in a tropical estuary. Indian J. Mar. Sci. 43:9 (2014), 1675–1681.
Kuang, C., Liang, H., Mao, X., Karney, B.W., Song, H., Influence of potential future sea-level rise on tides in the China sea. J. Coast. Res. 33:1 (2017), 105–117, 10.2112/JCOASTRES-D-16-00057.1.
Lannan, J.E., Robinson, A., Breese, W.P., Broodstock management of Crassostrea gigas: II. Broodstock conditioning to maximize larval survival. Aquaculture 21 (1980), 337–345, 10.1016/0044-8486(80)90068-X.
Li, C., Haws, M., Wang, H., Guo, X., Taxonomic Classification of Three Oyster (Ostreidae) Species from Myanmar. J. Shellfish Res. 36 (2017), 365–371, 10.2983/035.036.0209.
Li, Y., Shao, W., Huang, S., Zhang, Y., Fang, H., Jiang, J., Prediction of Suitable Habitats for Sapindus delavayi Based on the MaxEnt Model. Forests, 13, 2022, 1611, 10.3390/f13101611.
Lin, H.J., Yu, Q., Du, Z.Y., Fan, Y.Y., Wang, Y.W., Gao, S., Geomorphology and Sediment Dynamics of the Liyashan Oyster Reefs, Jiangsu Coast, China. Acta Oceanol. Sin. 40:2021 (2021), 118–128, 10.1007/s13131-021-1866-3.
Liu, S., Xue, Q., Xu, H., Lin, Z., Identification of Main Oyster Species and Comparison of Their Genetic Diversity in Zhejiang Coast, South of Yangtze River Estuary. Front. Mar. Sci., 8, 2021, 662515, 10.3389/fmars.2021.662515.
Ma, H., Qin, C., Wang, X., Zhu, W., Yin, C., Xi, S., Zuo, T., Pan, W., Establishing potential habitats of Mytilopsis sallei with Maxent. niche Model. J. Appl. Ecol. 31:4 (2020), 1357–1364, 10.13287/j.1001-9332.202004.038.
Marc, M., Simon, P., Christine, D., Jean-Louis, T., Michel, W., Paco, B., Influence of food (ciliate and phytoplankton) on the trophic transfer of inorganic and methyl-mercury in the Pacific cupped oyster Crassostrea gigas. Environ. Pollut., 257, 2020, 113503, 10.1016/j.envpol.2019.113503.
Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5 (2014), 1198–1205, 10.1111/2041-210X.12261.
Ni, G., Li, Q., Kong, L.F., Yu, H., Comparative phylogeography in marginal seas of the northwestern Pacific. Mol. Ecol. 23:3 (2014), 534–548, 10.1111/mec.12620.
Oliveira, M., Hamilton, S., Calheiros, D., Jacobi, C., Latini, R., Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Braz. J. Biol. 70:3 (2010), 831–840, 10.1590/s1519-69842010000400014.
Palumbi, S.R., Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. S 25:1 (1994), 547–572, 10.1146/annurev.es.25.110194.002555.
Parmesan, C., Yohe, G., A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:6918 (2003), 37–42, 10.1038/nature01286.
Pearsonm, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T., Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34 (2007), 102–117, 10.1111/j.1365-2699.2006.01594.x.
Peterson, A.T., Soberon, J., Pearson, R.G., Anderson, R.P., Martinez-Meyer, E., Nakamura, M. Araújo, M.B., 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press, Princeton, New Jersey. https://doi.org/10.1515/9781400840670.
Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., Opening the black box: an open-source release of Maxent. Ecography 40:7 (2017), 887–893, 10.1111/ecog.03049.
Piazza, B.P., Banks, P.D., La Peyre, M.K., The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restor. Ecol. 13:3 (2005), 499–506 https: //doi.org/10.1111/j.1526-100X.2005.00062.x.
Pickering, M.D., Horsburgh, K.J., Blundell, J.R., Hirschi, J.M., Nicholls, R.J., Verlaan, M., Wells, N.C., The impact of future sea-level rise on the global tides. Cont. Shelf Res. 142 (2017), 50–68, 10.1016/j.csr.2017.02.004.
Qin, Z., Li, W., Li, M., Chen, Z., Zhou, G., 2003. A methodology for true orthorectification of large-scale urban aerial images and automatic detection of building occlusions using digital surface model. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2, 729-731 vol.2. https://doi.org/10.1109/IGARSS.2003.1293898.
Quan, W., Zhu, J., Ni, Y., Shi, L., Chen, Y., Faunal utilization of constructed intertidal oyster (Crassostrea rivularis) reef in the Yangtze River estuary. China Ecol. Eng. 35:10 (2009), 1466–1475 https://10.1016/j.ecoleng.2009.06.001.
Quan, W., Humphries, A.T., Shen, X., Chen, Y., Oyster and Associated Benthic Macrofaunal Development on a Created Intertidal Oyster (Crassostrea ariakensis) Reef in the Yangtze River Estuary, China. J. Shellfish Res. 31:3 (2012), 599–610, 10.2983/035.031.0302.
Renner, I.W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G., Warton, D.I., Point process models for presence-only analysis. Methods Ecol. Evol. 6 (2015), 366–379, 10.1111/2041-210X.12352.
Robinson, A., Gonadal cycle of Crassostrea gigas kumamoto (Thunberg) in Yaquina Bay, Oregon and optimum conditions for broodstock oysters and larval culture. Aquaculture 106 (1992), 89–97, 10.1016/0044-8486(92)90252-G.
Sekino, M., In search of the Kumamoto oyster Crassostrea sikamea (Amemiya,1928) based on molecular markers:is the natural resource at stake?. Fish. Sci. 75:4 (2009), 819–831, 10.1007/s12562-009-0100-6.
Shi, Y., Wang, J., Zuo, T., Shan, X., Jin, X., Sun, J., Yuan, W., Pakhomov, E.A., Seasonal Changes in Zooplankton Community Structure and Distribution Pattern in the Yellow Sea, China. Front. Mar. Sci., 7, 2020, 10.3389/fmars.2020.00391.
Simon, P., Marc, M., Christine, D., Jean-Louis, T., Michel, W., Paco, B., Diet variably affects the trophic transfer of trace elements in the oyster Crassostrea gigas. Mar. Environ. Res., 161, 2020, 105124, 10.1016/j.marenvres.2020.105124.
Spalding, M.D., Fox, H.E., Halpern, B.S., McManus, M.A., Molnar, J., Allen, G.R., Davidson, N., Jorge, Z.A., Lombana, A.L., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A., Robertson, J., Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57 (2007), 573–583, 10.1641/B570707.
Tang, J., Li, J., Lu, H., Lu, F., Lu, B., Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Manag. Sci. 75 (2019), 1630–1637, 10.1002/ps.5280.
Ulanowicz, R.E., Tuttle, J.H., The trophic consequences of oyster stock rehabilitation in Chesapeake Bay. Estuaries 15 (1992), 298–306, 10.2307/1352778.
Wang, F., Li, X., Tang, X., Sun, X., Zhang, J., Yang, D., Xu, L., Zhang, H., Yuan, H., Wang, Y., Yao, Y., Wang, C., Guo, Y., Ren, Q., Li, Y., Zhang, R., Wang, X., Zhang, B., Sha, Z., The seas around China in a warming climate. Nat. Rev. Earth Environ., 2023, 2023, 10.1038/s43017-023-00453-6.
Wang, H., Qian, L., Wang, A., Guo, X., Occurrence and distribution of Crassostrea sikamea (Amemiya 1928) in China. J. Shellfish Res. 32:2 (2013), 439–446, 10.2983/035.032.0224.
Wang, J., Ganmanee, M., Shau-Hwai, A.T., Mujahid, A., Dong, Y., Pleistocene events and present environmental factors have shaped the phylogeography of the intertidal limpet Cellana toreuma (Reeve, 1855) (Gastropoda: Nacellidae) in Southeast Asia and China. J. Mollus. Stud. 82:3 (2016), 378–390, 10.1093/mollus/eyv071.
Wang, W., Wang, J., Choi, M.P., Ding, F., Li, P., Han, X., Ding, G., Guo, M., Huang, M., Duan, X., Cheng, W., Chen, Z., Z., J. Hawkins, S., Jiang, Y., Helmuth, B., Dong, Y., Global warming and artificial shorelines reshape seashore biogeography. Glob. Ecol. Biogeogr. 29:2 (2020), 220–231, 10.1111/geb.13019.
Warren, D.L., Seifert, S.N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21 (2011), 335–342, 10.1890/10-1171.1.
Warren, R., Vanderwal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., Osborn, T.J., Jarvis, A., Shoo, L.P., Williams, S.E., Lowe, J., Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Chang. 3 (2013), 678–682, 10.1038/NCLIMATE1887.
Weng, Q., Zhang, R., Wu, P., Chen, J., Pan, X., Zhao, D., Wang, J., Zhang, H., Qi, X., Wu, X., Han, J., Zhou, B., An Occurrence and Exposure Assessment of Paralytic Shellfish Toxins from Shellfish in Zhejiang Province, China. Toxins, 15, 2023, 624, 10.3390/toxins15110624.
Wilson, S.K., Depcyznski, M., Fisher, R., Holmes, T.H., Noble, M.M., Radford, B.T., Rule, M., Shedrawi, G., Tinkler, P., Fulton, C.J., Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef. Ecol. Evol. 8:3 (2018), 1918–1928, 10.1002/ece3.3779.
Wolny, J.L., Scott, P.S., Tustison, J., Brooks, C.R., Monitoring the 2007 Florida east coast Karenia brevis (Dinophyceae) red tide and neurotoxic shellfish poisoning (NSP) event. Algae 30 (2015), 49–58, 10.4490/ALGAE.2015.30.1.049.
Xiang, L., Wang, H., Liu, L., Zhao, H., Huang, Y., Chen, H., Ma, Y., Mao, Y., Hu, L., Hu, J., Distribution and Protection of Chinese Beech under the Background of Climate Change. Pol. J. Environ. Stud., 2022, 10.15244/pjoes/143884.
Yan, H., Feng, L., Zhao, Y., Feng, Li, Wu, D., Zhu, C., Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv., 2020, 10.1016/j.gecco.2019.e00856.
Yu, H., Fang, G., Rose, K.A., Tang, Y., Song, X., Examining Epibenthic Assemblages Associated with Artificial Reefs Using a Species Archetype Approach. Mar. Coast. Fish., 14, 2022, e10206, 10.1002/mcf2.10206.
Zhang, J., Song, M., Li, Z., Peng, X., Su, S., Li, B., Xu, X., Wang, W., Effects of Climate Change on the Distribution of Akebia quinata. Front. Ecol. Evol., 2021, 10.3389/fevo.2021.752682.
Zhang, K., Yao, L., Meng, J., Tao, J., Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634 (2018), 1326–1334, 10.1016/j.scitotenv.2018.04.112.
Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M., A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Sci. Total Environ. 599-600 (2017), 721–731, 10.1016/j.scitotenv.2017.04.232.
Zhang, Y., Zhang, C., Xu, B., Ji, Y., Ren, Y., Xue, Y., Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecol. Indic., 2022, 10.1016/j.ecolind.2022.108826.
Zhao, G., Cui, X., Sun, J., Li, T., Wang, Q., Ye, X., Fan, B., Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic., 132, 2021, 108256, 10.1016/j.ecolind.2021.108256.
Zhuo, Z., Xu, D., Pu, B., Wang, R., Ye, M., Predicting distribution of zanthoxylum bungeanum maxim. in China. BMC Ecol., 20(1), 2020, 46, 10.1186/s12898-020-00314-6.