[en] Introduction: Shellfish play an important role in ecological restoration and as carbon (C) sinks, but studies on their ecological carrying capacity (ECC) and C sequestration potential are sparse. Methods: In this study, we selected a 57-hectare artificial oyster reef in a typical marine ranching in Bohai Bay, China, to evaluate the ECC and their C sequestration potential of bivalve shellfish, and projecting their impact on functional groups in the system, with an Ecopath with Ecosim (EwE) food web model. We conducted four biological surveys to obtain the biomass measurements, with one conducted in each of the summer, autumn, and winter of 2019 and one in the spring of 2020; and the functional groups included in the surveys comprised fish, cephalopods, crustaceans, snails, bivalve shellfish, annelids, other macrobenthos, meiobenthos, starfish, sea cucumbers, zooplankton, phytoplankton, and detritus. Results and Discussion: The EwE model prediction results showed that the ECC of bivalve shellfish was established to be 282.66 t/km2, far more than the existing quantity of 187.76 t/km2. Therefore, at present, the ecosystem of the study marine ranching is not yet mature. Moreover, our ecological network analysis parameters indicated that the marine ranching ecosystem will be mature and stable when the bivalve shellfish population reaches its ECC. However, the increase in bivalve shellfish biomass will result in a decrease in the population sizes of species competing for food resources with bivalve shellfish, mainly gobiid fish such as Tridentiger bifasciatus, Tridentiger trigonocephalus, Tridentiger barbatus. Simultaneously, when the bivalve shellfish reach their ECC, 29.23 t of CO2 can be sequestrated by bivalve shellfish, comprising 14.32 t being removed from the ecosystem as prey and 14.91 t being stored on the seafloor through biodeposition. Conclusion: Therefore, the research demonstrated that, within the scope of ECC, the increasing bivalve shellfish can improve the C sequestration capacity of the marine ranch ecosystem, and effective management of bivalve shellfish in marine ranching can improve the economic benefits and C sink service functions of marine ranching.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Li, Zepeng; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Chen, Yan; Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
Wang, Gang; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Department of Science and Technology of Hebei Province, Qinhuangdao, China
Mu, Jiandong; Hebei Marine Living Resources and Environment Key Laboratory, Department of Science and Technology of Hebei Province, Qinhuangdao, China
Sun, Yanfeng; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Yu, Haolin ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Xu, Jiangling; North China Sea Marine Forecasting Center of State Oceanic Administration, State Oceanic Administration, Qingdao, China ; Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, State Oceanic Administration, Qingdao, China
Yan, Ying; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Luo, Shuangyue; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Han, Fuqiang; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Feng, Jie; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ; North China Sea Marine Forecasting Center of State Oceanic Administration, State Oceanic Administration, Qingdao, China ; Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, State Oceanic Administration, Qingdao, China
Pan, Zhe; Ocean College, Hebei Agricultural University, Qinhuangdao, China
Language :
English
Title :
Ecological carrying capacity and carbon sequestration potential of bivalve shellfish in marine ranching: A case study in Bohai Bay, China
NSCF - National Natural Science Foundation of China
Funding text :
This research was funded by the National Natural Science Foundation of China (Grant Nos. 42106102), Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province (Grant Nos. HBMESO2303), the Natural Science Foundation of Hebei Province, China (Grant Nos. C2020204151 & C2021204059), Special Fund for Talent Introduction of Hebei Agricultural University, China (Grant Nos. YJ2020019 & YJ2020026), 2021 Hebei Agricultural University Provincial Universities Basic Research Business Fee Research Project (Grant Nos. KY2021013), and College of Oceanography, Hebei Agricultural University Entrepreneurship Project (Scientific Research) (2021KY04). Acknowledgments
Baird D. Asmus H. Asmus R. (2007). Trophic dynamics of eight intertidal communities of the sylt-rømø bight ecosystem, northern wadden Sea. Mar. Ecol. Prog. Ser. 351, 25-41. doi: 10.3354/meps07137
Byron C. Link J. Costa-Pierce B. Bengtson D. (2011). Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett bay, Rhode island. Ecol. Modell. 222, 1743-1755. doi: 10.1016/j.ecolmodel.2011.03.010
Chauvaud L. Thompson J. K. Cloern J. E. Thouzeau G. (2003). Clams as CO2 generators: The Potamocorbula amurensis example in San Francisco bay. Limnol. Oceanogr. 48, 2086-2092. doi: 10.4319/lo.2003.48.6.2086
Chowdhury M. S. N. Walles B. Sharifuzzaman S. M. Shahadat Hossain M. Ysebaert T. Smaal A. C. (2019). Oyster breakwater reefs promote adjacent mudflat stability and salt marsh growth in a monsoon dominated subtropical coast. Sci. Rep. 9, 8549. doi: 10.1038/s41598-019-44925-6
Christensen V. Walters C. J. (2004). Ecopath with ecosim: Methods, capabilities and limitations. Ecol. modell. 172, 109-139. doi: 10.1016/j.ecolmodel.2003.09.003
Christensen V. Walters C. Pauly D. (2005). Ecopath with Ecosim:A user’s guide (V Ancouver: Fisheries Centre of University of British Columbia).
Duarte C. M. Losada I. J. Hendriks I. E. Mazarrasa I. Marbà N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nat. Climate Change 3 (11), 961-968. doi: 10.1038/nclimate1970
Dumbauld B. R. Ruesink J. L. Rumrill S. S. (2009). The ecological role of bivalve shellfish aquaculture in the estuarine environment: A review with application to oyster and clam culture in West coast (USA) estuaries. Aquaculture 290, 196-223. doi: 10.1016/j.aquaculture.2009.02.033
Dutta D. Schimel D. S. Sun Y. van der Tol C. Frankenberg C. (2019). Optimal inverse estimation of ecosystem parameters from observations of shellfish and energy fluxes. Biogeosciences 16, 77-103. doi: 10.5194/bg-16-77-2019
Feng J. Tian X. L. Dong S. L. He R. P. Zhang K. Zhang D. X. et al. (2022b). Temporal dynamics in energy fluxes and trophic structure of a Portunus trituberculatus polyculture ecosystem during different culture periods. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.873643
Feng J. Zhang T. Ma P. Z. Bai T. Xu J. L. Wang H. Y. et al. (2022c). Research progress and the prospect of oyster reef carbon source and sink functions. Prog. Fish. Sci. 43, 115-125. doi: 10.19663/j.issn2095-9869.20220222003
Feng J. Zhang T. Song H. Yu Z. L. Yang M. J. Hu Z. et al. (2022a). Assessing the carrying capacity of Mercenaria mercenaria using a steady linear food web model in two pond-culture ecosystems. Aquacult Res. 00, 1-17. doi: 10.1111/are.16142
Filgueira R. Guyondet T. Thupaki P. Sakamaki T. Grant J. (2021). The effect of embayment complexity on ecological carrying capacity estimations in bivalve aquaculture sites. J. Cleaner Prod. 288, 125739. doi: 10.1016/j.jclepro.2020.125739
Finn J. T. (1976). Measures of ecosystem structure and function derived from analysis of flows. J. Theor. Biol. 56, 363-380. doi: 10.1016/S0022-5193(76)80080-X
Fry B. (2006). Stable isotope ecology Vol. 521, 318 (New York: Springer).
Gao Y. Fang J. Lin F. Li F. Li W. Wang X. et al. (2020). Simulation of oyster ecological carrying capacity in sanggou bay in the ecosystem context. Aquacult. Int. 28, 2059-2079. doi: 10.1007/s10499-020-00576-3
Gee J. M. (1989). An ecological and economic review of meiofauna as food for fish. Zool. J. Linn. Soc 96, 243-261. doi: 10.1111/j.1096-3642.1989.tb02259.x
Grabowski J. H. Peterson C. H. (2007). Restoring oyster reefs to recover ecosystem services. Ecosyst. Eng. Plants Protists. 4, 281-298. doi: 10.1016/S1875-306X(07)80017-7
Heymans J. Coll M. Libralato S. Christensen V. (2011). Ecopath theory, modeling, and application to coastal ecosystems. Treatise Estuar. Coast. Sci. (Oxford), 93-113.
Heymans J. J. Coll M. Link J. S. Mackinson S. Steenbeek J. Walters C. et al. (2016). Best practice in ecopath with ecosim food-web models for ecosystem-based management. Ecol. Modell. 331, 173-184. doi: 10.1016/j.ecolmodel.2015.12.007
Inglis G. Hayden B. J. Ross A. H. (2000). An overview of factors affecting the carrying capacity of coastal embayments for mussel culture. (Christchurch: National Institute of Water & Atmospheric Research), 69 vi + 31p.
Jiang W. M. Gibbs M. T. (2005). Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model. Aquaculture 244, 171-185. doi: 10.1016/j.aquaculture.2004.11.050
Jin X. S. Deng J. Y. (2000). Variations in community structure of fishery resources and biodiversity in the laizhou bay, Shandong. Biodiversity. Sci. 8, 65. doi: 10.17520/biods.2000009
Kluger L. C. Taylor M. H. Mendo J. Tam J. Wolff M. (2016). Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system. Ecol. Modell. 331, 44-55. doi: 10.1016/j.ecolmodel.2015.09.002
Latham L. G. (2006). Network flow analysis algorithms. Ecol. Model. 192, 586-600. doi: 10.1016/j.ecolmodel.2005.07.029
Li X. Yang W. Sun T. Gaedke U. (2021). Quantitative food web structureand ecosystem functions in a warm-temperate seagrass bed. Mar. Biol. 168, 74. doi: 10.1007/s00227-021-03878-z
Libralato S. (2013). “System omnivory index,” in Encyclopedia of ecology. Eds. Jørgensen S. E. Fath B. D. (Oxford: Elsevier), 481-486. doi: 10.1007/s00227-021-03878-z
Link J. S. (2010). Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: A plea for PREBAL. Ecol. Model. 221, 1580-1591. doi: 10.1016/j.ecolmodel.2010.03.012
López-Jamar E. Iglesias J. Otero J. J. (1984). Contribution of infauna and mussel-raft epifauna to demersal fish diets. Mar. Ecol. Prog. Ser. 15, 13-18. doi: 10.3354/meps015013
Lv X. Wang X. Wu Y. Jiang W. Fang J. Fang J. (2018). Effect oftemperature on the energy budget of Arcuatula senhousei. Prog. Oceanogr. 39, 119-125. doi: 10.19663/j.issn2095-9869.20170420002
McKindsey C. W. Thetmeyer H. Landry T. Silvert W. (2006). Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 261, 451-462. doi: 10.1016/j.aquaculture.2006.06.044
Newell R. I. Fisher T. R. Holyoke R. R. Cornwell J. C. (2005). “Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake bay, USA,” in The comparative roles of suspension-feeders in ecosystems (Springer), 93-120. doi: 10.1007/1-4020-3030-4-6
Odum E. P. (1969). The strategy of ecosystem development. Science 164, 262-270. doi: 10.1126/science.164.3877.262
Ortiz M. Berrios F. Campos L. Uribe R. Ramirez A. Hermosillo-Núñez B. et al. (2015). Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of mejillones and antofagasta bays (SE pacific): Comparative network structure and assessment of human impacts. Ecol. Modell. 309, 153-162. doi: 10.1016/j.ecolmodel.2015.04.006
Pachauri R. K. Meyer L. A. Plattner G. K. Stocker T. (2014). Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (Geneva, Switzerland: Intergovernmental Panel on Climate Change).
Palomares M. L. Pauly D. (1989). A multiple regression model for prediction the food consumption of marine fish populations. Mar. Freshw. Res. 40, 259-273. doi: 10.1071/MF9890259
Pan Z. Gao Q. F. Dong S. L. Wang F. Jiang X. Y. Zhang G. et al. (2019a). Remineralization and preservation of sedimentary organic carbon, and authigenic mineral formation in alian bay and its adjacent areas, China: Implication for the influence of abalone (Haliotis discus hannai ino) and kelp (Saccharina japonica) mariculture. Aquaculture 507, 301-312. doi: 10.1016/j.aquaculture.2019.04.051
Pan Z. Gao Q. F. Dong S. L. Wang F. Li H. D. Zhao K. et al. (2019b). Effects of abalone (Haliotis discus hannai ino) and kelp (Saccharina japonica) mariculture on sources, distribution, and preservation of sedimentary organic carbon in ailian bay, China: Identified by coupling stable isotopes (δ13C and δ15N) with C/N ratio analyses. Mar. pollut. Bull. 141, 387-397. doi: 10.1016/j.marpolbul.2019.02.053
Parsons T. R. Maita Y. Lalli C. M. (1984). “Determination of chlorophyllsand total carotenoids: Spectrophotometric method,” in A manual of chemical& biological methods for seawater analysis. Eds. Parsons T. R. Maita Y. Lalli C. M. (Amsterdam: Pergamon), 101104. doi: 10.1016/b978-0-08-030287-4.50032-3
Ren L. H. (2014). Study on the carbon sequestration function of raft-farmed crassostrea gigas and their main filter-feeding attached organisms in sanggou bay (Graduate School of Chinese Academy of Sciences). (Institute of Oceanography).
Shen J. S. Jinnuo Lv Rongjian L. (2020). Exploring the design of blue carbon sink compensation scheme for china’s marine rangelands. J. Ocean Univ. China. 3, 68-75. doi: 10.16497/j.cnki.1672-335X.202003007
Srithong N. Jensen K. R. Jarernpornnipat A. (2021). Application of the ecopath model for evaluation of ecological structure and function for fisheries management: A case study from fisheries in coastal Andaman Sea, Thailand. Reg. Stud. Mar. Sci. 47, 101-972. doi: 10.1016/j.rsma.2021.101972
Tang Q. S. Hui L. (2016). Strategy for carbon sink and its amplification in marine fisheries. Strategic Study CAE. 18, 68-73. doi: 10.15302/J-SSCAE-2016.03.011
Tumbiolo M. L. Downing J. A. (1994). An empirical model for the prediction of secondary production in marine benthic invertebrate populations. Mar. Ecol. Prog. Ser. 114, 165-174. doi: 10.3354/meps114165
Ulanowicz R. E. (1986). Growth and development: Ecosystems phenomenology (New York, NY: Springer-Verlag).
Ulanowicz R. E. (2004). Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28, 321-339. doi: 10.1016/j.compbiolchem.2004.09.001
Ulanowicz R. E. (2012). Growth and development: ecosystems phenomenology (Springer Science & Business Media).
Velasco L. A. Barros J. Guerrero A. (2009). Effect of the density on the growth and survival of the Caribbean scallops argopecten nucleus and nodipecten nodosus in suspended culture. Aquacult Res. 40, 687-695. doi: 10.1111/j.1365-2109.2008.02145.x
Wang X. Feng J. Lin C. Liu H. Chen M. Zhang Y. (2022). Structural and functional improvements of coastal ecosystem based on artificial oyster reef construction in the Bohai Sea, China. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.829557
Watanabe K. Yoshida G. Hori M. Umezawa Y. Moki H. Kuwae T. (2020). Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 17, 2425-2440. doi: 10.5194/bg-17-2425-2020
Wu Z. Zhang X. Lozano-Montes H. M. Loneragan N. R. (2016). Trophic flows, kelp culture and fisheries in the marine ecosystem of an artificial reef zone in the yellow Sea. Estuar. Coast. Shelf Sci. 182, 86-97. doi: 10.1016/j.ecss.2016.08.021
Yu B. Y. Zhao G. P. An R. Y. Chen J. M. Tan J. X. Li X. Y. (2021). Research on china’s CO2 emission pathway under carbon neutral target. J. B. Inst. Techno. 23, 17-24.
Yue J. Dong Y. Zhang B. H. Han F. Zhao X. T. Liu D. Y. et al. (2012). Several oyster barrier reefs in the northwest coast of bohai Sea. Acta Geol. Sin. 86, 1175-1187.
Zhang B. (2018). Feeding ecology of fishes in the bohai Sea. Prog. Fish. Sci. 39, 11-22. doi: 10.19663/j.issn2095-9869.20171103001
Zhang J. H. Fang J. G. Tang Q. S. (2005). The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem. Adv. Earth Sci. 20, 359-365. doi: 10.11867/j.issn.1001-8166.2005.03.0359
Zhao P. Hu X. D. (2019). International blue carbon cooperation and china’s choice. Mar. Sci. Bull. 38, 613-619.
Zhao L. Zuykov M. Tanaka K. Shirai K. Anderson J. McKindsey C. W. et al. (2019). New insight into light-enhanced calcification in mytilid mussels, mytilus sp., infected with photosynthetic algae coccomyxa sp.: δ13C value and metabolic carbon record in shells. J. Exp. Mar. Biol. Ecol. 520, 151-211. doi: 10.1016/j.jembe.2019.151211