behavioral response; exposure to low oxygen; habitat usage; hypoxia; hypoxia avoidance; reef-dependent species
Abstract :
[en] Reef habitat in coastal ecosystems is increasingly being augmented with artificial reefs (ARs) and is simultaneously experiencing increasing hypoxia due to eutrophication and climate change. Relatively little is known about the effects of hypoxia on organisms that use complex habitat arrangements and how the presence of highly preferred AR habitat can affect the exposure of organisms to low dissolved oxygen (DO). We performed two laboratory experiments that used video recording of behavioral movement to explore 1) habitat usage and staying duration of individuals continuously exposed to 3, 5, and 7 mg/L dissolved oxygen (DO) in a complex of multiple preferred and avoided habitat types, and 2) the impact of ARs on exposure to different DO concentrations under a series of two-way replicated choice experiments with or without AR placement on the low-oxygen side. Six common reef-dependent species found in the northeastern sea areas of China were used (i.e., rockfish Sebastes schlegelii and Hexagrammos otakii, filefish Thamnaconus modestus, flatfish Pseudopleuronectes yokohamae, sea cucumber Stichopus japonicus, and crab Charybdis japonica). Results showed that lower DO levels decreased the usage of preferred habitats of the sea cucumber and the habitat-generalist filefish but increased the habitat affinity to preferred habitat types for the two habitat-specific rockfishes. Low DO had no effect on the crab’s habitat usage. In the choice experiment, all three fish species avoided 1 mg/L, and the rockfish S. schlegelii continued to avoid the lower DO when given choices involving pairs of 3, 5, and 7 mg/L, while H. otakii and the flatfish showed less avoidance. The availability of ARs affected exposure to low DO for the habitat-preferring rockfishes but was not significant for the flatfish. This study provides information for assessing the ecological effects and potential for adaptation through behavioral movement for key reef-dependent species under the increasing overlap of ARs and hypoxia anticipated in the future.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Yu, Haolin ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China ; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
Fang, Guangjie; Fishery Resources and Ecology Research Department, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
Rose, Kenneth A.; Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, United States
Lin, Jiazheng; College of Fisheries, Ocean University of China, Qingdao, China
Feng, Jie; North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao, China
Wang, Haiyan; Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Cao, Qingxian; Guangxi Institute of Oceanography, Nanning, China
Tang, Yanli; College of Fisheries, Ocean University of China, Qingdao, China
Zhang, Tao; Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China ; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China ; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
Language :
English
Title :
Effects of habitat usage on hypoxia avoidance behavior and exposure in reef-dependent marine coastal species
NSCF - National Natural Science Foundation of China
Funding text :
This research was supported by the National Key R&D Program of China (2019YFD0901301), the National Natural Science Foundation of China (Grant No. 42106102), the Primary Research and Development Plan of Guangxi Province (Grant No. 2021AB34014), and the Qingdao Postdoctoral Application Research Project (Grant No. QDBSH20220201045).
Bianchi T. DiMarco S. Cowan J. Hetland R. Chapman P. Day J. et al. (2010). The science of hypoxia in the northern gulf of Mexico: A review. Sci. Total Environ. 408, 1471–1484. doi: 10.1016/j.scitotenv.2009.11.047
Breitburg D. L. Baumann H. Sokolova I. M. Frieder C. A. (2019). “Multiple stressors -forces that combine to worsen deoxygenation and its effects,” in Ocean deoxygenation: Everyone’s problem. causes, impacts, consequences and solutions. Eds. Laffoley D. D. A. Baxter J. M. (Gland: IUCN), 225–247.
Breitburg D. L. Levin L. A. Oschlies A. Grégoire M. Chavez F. P. Conley D. J. et al. (2018). Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240. doi: 10.1126/science.aam7240
Caddy J. F. (1993). Toward a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Rev. Fish. Sci. 1, 57–95. doi: 10.1080/10641269309388535
Campbell L. A. Rice J. A. (2014). Effects of hypoxia-induced habitat compression on growth of juvenile fish in the neuse river estuary, north Carolina, USA. Mar. Ecol. Prog. Ser. 497, 199–213. doi: 10.3354/meps10607
Campbell M. D. Rose K. A. Boswell K. Cowan J. (2011). Individual-based modeling of an artificial reef fish community: Effects of habitat quantity and degree of refuge. Ecol. Model. 222, 3895–3909. doi: 10.1016/j.ecolmodel.2011.10.009
Claireaux G. Lefrançois C. (2007). Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos. Trans. R. Soc B-Biol. Sci. 362, 2031–2041. doi: 10.1098/rstb.2007.2099
Craig J. K. (2012). Aggregation on the edge: Effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the northern gulf of Mexico. Mar. Ecol. Prog. Ser. 445, 75–95. doi: 10.3354/meps09437
David L. T. David B. E. (2000). Effects of hypoxia on an estuarine predator-prey interaction: Foraging behavior and mutual interference in the blue crab callinectes sapidus and the infaunal clam prey mya arenaria. Mar. Ecol. Prog. Ser. 196, 221–237. doi: 10.3354/meps196221
Diaz R. J. Rosenberg R. (1996). Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanographic literature Rev. 12, 1250.
Diaz R. J. Rosenberg R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929. doi: 10.1126/science.1156401
Domenici P. Herbert N. A. Lefrançois C. Steffensen J. F. McKenzie D. J. (2013). “The effect of hypoxia on fish swimming performance and behaviour,” in Swimming physiology of fish: Towards using exercise to farm a fit fish in sustainable aquaculture. Eds. Palstra A. P. Planas J. V. (Berlin, Heidelberg: Springer Berlin Heidelberg Press) 129–159. doi: 10.1007/978-3-642-31049-2_6
Domenici P. Lefrançois C. Shingles A. (2007). Hypoxia and the antipredator behaviours of fishes. Philos. Trans. R. Soc B-Biol. Sci. 362, 2105–2121. doi: 10.1098/rstb.2007.2103
Domenici P. Steffensen J. F. Batty R. S. (2000). The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring. J. Fish Biol. 57, 1526–1538. doi: 10.1111/j.1095-8649.2000.tb02229.x
Domenici P. Steffensen J. F. Marras S. (2017). The effect of hypoxia on fish schooling. Philos. Trans. R. Soc B-Biol. Sci. 372, 236–249. doi: 10.1098/rstb.2016.0236
Eby L. Crowder L. (2002). Hypoxia-based habitat compression in the neuse river estuary: context-dependent shifts in behavioral avoidance thresholds. Can. J. Fish. Aquat. Sci. 59, 952–965. doi: 10.1139/F02-067
Fan W. Pan D. Xiao C. Lin T. Pan Y. Chen Y. (2019). Experimental study on the performance of an innovative tide-induced device for artificial downwelling. Sustainability 11 (19), 1–23. doi: 10.3390/su11195268
Fowler A. E. McLay C. L. (2013). Early stages of a new Zealand invasion by charybdis japonica (A. Milne-Edwards 1861) (Brachyura: Portunidae) from Asia: Population demography. J. Crustac. Biol. 33, 224–234. doi: 10.1163/1937240X-00002127
French C. G. Wahl D. H. (2018). Influences of dissolved oxygen on juvenile largemouth bass foraging behaviour. Ecol. Freshw. Fish 27, 559–569. doi: 10.1111/eff.12370
Gunderson A. R. Armstrong E. J. Stillman J. H. (2016). Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378. doi: 10.1146/annurev-marine-122414-033953
Hayes K. R. Sliwa C. (2003). Identifying potential marine pests–a deductive approach applied to Australia. Mar. pollut. Bull. 46, 91–98. doi: 10.1016/S0025-326X(02)00321-1
Herbert N. A. Skjæraasen J. E. Nilsen T. Salvanes A. G. V. Steffensen J. F. (2011). The hypoxia avoidance behaviour of juvenile Atlantic cod (Gadus morhua l.) depends on the provision and pressure level of an O2 refuge. Mar. Biol. 158, 737–746. doi: 10.1007/s00227-010-1601-7
Hrycik A. R. Almeida L. Z. Höök T. O. (2017). Sub-Lethal effects on fish provide insight into a biologically-relevant threshold of hypoxia. Oikos 126, 307–317. doi: 10.1111/oik.03678
Hughes D. Alderdice R. Cooney C. Kuhl M. Pernice M. Voolstra C. et al. (2020). Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307. doi: 10.1038/s41558-020-0737-9
Huntington B. E. Karnauskas M. Babcock E. A. Lirman D. (2010). Untangling natural seascape variation from marine reserve effects using a landscape approach. PloS One 5, e12327. doi: 10.1371/journal.pone.0012327
Jones D. R. (1971). The effect of hypoxia and anaemia on the swimming performance of rainbow trout (Salmo gairdneri). J. Exp. Biol. 55, 541–551. doi: 10.1242/jeb.55.2.541
Jorissen H. Nugues M. M. (2021). Coral larvae avoid substratum exploration and settlement in low-oxygen environments. Coral Reefs. 40, 31–39. doi: 10.1007/s00338-020-02013-6
Jourdan-Pineau H. Dupont-Prinet A. Claireaux G. McKenzie D. J. (2010). An investigation of metabolic prioritization in the European Sea bass, dicentrarchus labrax. Physiol. Biochem. Zool. 83, 68–77. doi: 10.1086/648485
Kõuts M. Maljutenko I. Elken J. Liu Y. Hansson M. Viktorsson L. et al. (2021). Recent regime of persistent hypoxia in the Baltic Sea. Environ. Res. Commun. 3, 075004. doi: 10.1088/2515-7620/ac0cc4
LaBone E. D. Rose K. A. Justic D. Huang H. Wang L. (2021). Effects of spatial variability on the exposure of fish to hypoxia: A modeling analysis for the gulf of Mexico. Biogeosciences 18, 487–507. doi: 10.5194/bg-18-487-2021
Lagos M. E. White C. R. Marshall D. J. (2015). Avoiding low-oxygen environments: oxytaxis as a mechanism of habitat selection in a marine invertebrate. Mar. Ecol. Prog. Ser. 540, 99–107. doi: 10.3354/meps11509
Lefrançois C. Ferrari R. S. Moreira da Silva J. Domenici P. (2009). The effect of progressive hypoxia on spontaneous activity in single and shoaling golden grey mullet liza aurata. J. Fish Biol. 75, 1615–1625. doi: 10.1111/j.1095-8649.2009.02387.x
Lemoine H. R. Paxton A. B. Anisfeld S. C. Rosemond R. C. Peterson C. H. (2019). Selecting the optimal artificial reefs to achieve fish habitat enhancement goals. Biol. Conserv. 238, 108200. doi: 10.1016/j.biocon.2019.108200
Logan R. K. Lowe C. G. (2018). Residency and inter-reef connectivity of three gamefishes between natural reefs and a large mitigation artificial reef. Mar. Ecol. Prog. Ser. 593, 111–126. doi: 10.3354/meps12527
Marcek B. J. Burbacher E. A. Dabrowski K. Winslow K. P. Ludsin S. A. (2020). Interactive effects of hypoxia and temperature on consumption, growth, and condition of juvenile hybrid striped bass. Trans. Am. Fish. Soc 149, 71–83. doi: 10.1002/tafs.10210
McBryan T. L. Anttila K. Healy T. M. Schulte P. M. (2013). Responses to temperature and hypoxia as interacting stressors in fish: Implications for adaptation to environmental change. Integr. Comp. Biol. 53, 648–659. doi: 10.1093/icb/ict066
McNeill B. Perry S. F. (2006). The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 209, 4214–4223. doi: 10.1242/jeb.02519
Messina-Henríquez S. Aguirre Á. Brokordt K. Flores H. Oliva M. Allen P. J. et al. (2022). Swimming performance and physiological responses of juvenile cojinoba seriolella violacea in hypoxic conditions. Aquaculture 548, 737560. doi: 10.1016/j.aquaculture.2021.737560
Meyer-Gutbrod E. Kui L. Miller R. Nishimoto M. Snook L. Love M. (2021). Moving on up: Vertical distribution shifts in rocky reef fish species during climate-driven decline in dissolved oxygen from 1995 to 2009. Glob. Change Biol. 27, 6280–6293. doi: 10.1111/gcb.15821
Mitamura H. Nishizawa H. Mitsunaga Y. Tanaka K. Takagi J. Noda T. et al. (2021). Attraction of an artificial reef: A migratory demersal flounder remains in shallow water under high temperature conditions in summer. Environ. Biol. Fishes 105, 1953–1962. doi: 10.1007/s10641-021-01153-0
Nilsson G. E. Östlund-Nilsson S. (2004). doi: 10.1098/rsbl.2003.0087
Nilsson G. E. Östlund-Nilsson S. Munday P. L. (2010). Effects of elevated temperature on coral reef fishes: Loss of hypoxia tolerance and inability to acclimate. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 156, 389–393. doi: 10.1016/j.cbpa.2010.03.009
Plumlee J. D. Dance K. M. Dance M. A. Rooker J. R. TinHan T. C. Shipley J. B. et al. (2020). Fish assemblages associated with artificial reefs assessed using multiple gear types in the northwest gulf of Mexico. Bull. Mar. Sci. 96, 655–678. doi: 10.5343/bms.2019.0091
Pörtner H. O. Farrell A. P. (2008). Physiology and climate change. Science 322, 690–692. doi: 10.1126/science.1163156
Portner H. O. Peck M. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779. doi: 10.1111/j.1095-8649.2010.02783.x
Rabalais N. N. Díaz R. J. Levin L. A. Turner R. E. Gilbert D. Zhang J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619. doi: 10.5194/bg-7-585-2010
Rabalais N. N. Turner R. E. (2019). Gulf of Mexico hypoxia: Past, present, and future. Limnol. Oceanogr. Bull. 28, 117–124. doi: 10.1002/lob.10351
Randall D. (1982). The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol. 100, 275–288. doi: 10.1242/jeb.100.1.275
Rasmuson L. K. Blume M. T. O. Rankin P. S. (2021). Habitat use and activity patterns of female deacon rockfish (Sebastes diaconus) at seasonal scales and in response to episodic hypoxia. Environ. Biol. Fishes 104, 535–553. doi: 10.1007/s10641-021-01092-w
Reeds K. A. Smith J. A. Suthers I. M. Johnston E. L. (2018). An ecological halo surrounding a large offshore artificial reef: Sediments, infauna, and fish foraging. Mar. Environ. Res. 141, 30–38. doi: 10.1016/j.marenvres.2018.07.011
Reeves D. B. Chesney E. J. Munnelly R. T. Baltz D. M. Marx B. D. (2018). Abundance and distribution of reef-associated fishes around small oil and gas platforms in the northern gulf of mexico’s hypoxic zone. Estuaries Coasts 41, 1835–1847. doi: 10.1007/s12237-017-0349-4
Richards J. G. (2009). “Chapter 10 metabolic and molecular responses of fish to hypoxia,” in Fish physiology. Eds. Richards J. G. Farrell A. P. Brauner C. J. (Amsterdam, The Netherlands: Academic Press), 443–485. doi: 10.1016/S1546-5098(08)00010-1
Rilov G. Figueira W. F. Lyman S. J. Crowder L. B. (2007). Complex habitats may not always benefit prey: Linking visual field with reef fish behavior and distribution. Mar. Ecol. Prog. Ser. 329, 225–238. doi: 10.3354/meps329225
Roman M. R. Brandt S. B. Houde E. D. Pierson J. J. (2019). Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00139
Rose K. A. Adamack A. T. Murphy C. A. Sable S. E. Kolesar S. E. Craig J. K. et al. (2009). Does hypoxia have population-level effects on coastal fish? musings from the virtual world. J. Exp. Mar. Biol. Ecol. 381, S188–S203. doi: 10.1016/j.jembe.2009.07.022
Shimps E. L. Rice J. A. Osborne J. A. (2005). Hypoxia tolerance in two juvenile estuary-dependent fishes. J. Exp. Mar. Biol. Ecol. 325, 146–162. doi: 10.1016/j.jembe.2005.04.026
Steckbauer A. Duarte C. Carstensen J. Vaquer-Sunyer R. Conley D. (2011). Ecosystem impacts of hypoxia: Thresholds of hypoxia and pathways to recovery. Environ. Res. Lett. 6, 025003. doi: 10.1088/1748-9326/6/2/025003
Uphoff J. H. McGinty M. Lukacovic R. Mowrer J. Pyle B. (2011). Impervious surface, summer dissolved oxygen, and fish distribution in Chesapeake bay subestuaries: Linking watershed development, habitat conditions, and fisheries management. North Am. J. Fish Manage. 31, 554–566. doi: 10.1080/02755947.2011.598384
Vaquer-Sunyer R. Duarte C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. doi: 10.1073/pnas.0803833105
Wang X. Feng J. Lin C. Liu H. Chen M. Zhang Y. (2022). Structural and functional improvements of coastal ecosystem based on artificial oyster reef construction in the bohai Sea, China. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.829557
Wang S. Y. Lau K. Lai K.-P. Zhang J.-W. Tse A. C.-K. Li J.-W. et al. (2016). Hypoxia causes transgenerational impairments in reproduction of fish. Nat. Commun. 7, 12114. doi: 10.1038/ncomms12114
Wannamaker C. M. Rice J. A. (2000). Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern united states. J. Exp. Mar. Biol. Ecol. 249, 145–163. doi: 10.1016/S0022-0981(00)00160-X
Watson A. (2016). Oceans on the edge of anoxia. Science 354, 1529–1530. doi: 10.1126/science.aaj2321
Wei Q. Wang B. Yao Q. Xue L. Sun J. Xin M. et al. (2019). Spatiotemporal variations in the summer hypoxia in the bohai Sea (China) and controlling mechanisms. Mar. pollut. Bull. 138, 125–134. doi: 10.1016/j.marpolbul.2018.11.041
Wei Q. Wang B. Zhang X. Ran X. Fu M. Sun X. et al. (2021a). Contribution of the offshore detached changjiang (Yangtze river) diluted water to the formation of hypoxia in summer. Sci. Total Environ. 764, 142838. doi: 10.1016/j.scitotenv.2020.142838
Wei Q. Xue L. Yao Q. Wang B. Yu Z. (2021b). Oxygen decline in a temperate marginal sea: Contribution of warming and eutrophication. Sci. Total Environ. 757, 143227. doi: 10.1016/j.scitotenv.2020.143227
Weiland F. van Beek L. Kwadijk J. Bierkens M. (2012). Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci. 16, 1047–1062. doi: 10.5194/hess-16-1047-2012
Wong C. C. Drazen J. C. Callan C. K. Korsmeyer K. E. (2018). Hypoxia tolerance in coral-reef triggerfishes (Balistidae). Coral Reefs 37, 215–225. doi: 10.1007/s00338-017-1649-7
Wu R. (2002). Hypoxia: From molecular responses to ecosystem responses. Mar. pollut. Bull. 45, 35–45. doi: 10.1016/S0025-326X(02)00061-9
Yatsuya K. Matsumoto Y. (2021). Effects of the swimming crab charybdis japonica on sea urchin mesocentrotus nudus grazing: Cage experiments in barren ground and land-based tanks. Fish. Sci. 87, 817–826. doi: 10.1007/s12562-021-01555-0
Yu H. Fang G. Rose K. A. Tang Y. Song X. (2022). Examining epibenthic assemblages associated with artificial reefs using a species archetype approach. Mar. Coast. Fish. 14, e10206. doi: 10.1002/mcf2.10206
Yu H. Yang W. Liu C. Tang Y. Song X. Fang G. (2020). Relationships between community structure and environmental factors in xixiakou artificial reef area. J. Ocean Univ. 19, 883–894. doi: 10.1007/s11802-020-4298-3
Zhang J. Gilbert D. Gooday A. J. Levin L. Naqvi S. W. A. Middelburg J. J. et al. (2010). Natural and human-induced hypoxia and consequences for coastal areas: Synthesis and future development. Biogeosciences 7, 1443–1467. doi: 10.5194/bg-7-1443-2010
Zhou X. Zhang X. Li W. (2018). Effects of temperature and dissolved oxygen on the survival, activity and the adaptation strategy of metabolism in sea cucumber (Apostichopus japonicus). J. Fisheries China 42 (08), 1209–1219.
Zhu C. D. Wang Z. H. Yan B. (2013). Strategies for hypoxia adaptation in fish species: A review. J. Comp. Physiol. B 183, 1005–1013. doi: 10.1007/s00360-013-0762-3
Zhu B. Zhang H. Liu D. Lu Y. Wang F. (2022). Importance of substrate on welfare in swimming crab (Portunus trituberculatus) culture: A territorial behavior perspective. Aquacult. Rep. 24, 101113. doi: 10.1016/j.aqrep.2022.101113