Comparison of 16S rRNA Gene Primers on Studying Microbial Community Composition in Bottom Water and Sediment of Artificial Reefs in Laoshan Bay, China - 2022
Comparison of 16S rRNA Gene Primers on Studying Microbial Community Composition in Bottom Water and Sediment of Artificial reefs in Laoshan Bay, China.pdf
16S rRNA; archaea; ARs; bacteria; hypervariable region
Abstract :
[en] Marine microorganisms are indispensable regulators of nutrient cycling and energy flow, which are crucial for artificial reefs (ARs) ecosystems. However, little is known about the microbial communities in the bottom water and sediment of ARs. Studies of microbial diversities have greatly advanced due to the development of high-throughput sequencing technologies, whereas the results may vary significantly due to the primers’ choice. This study investigated the influences of two 16S ribosomal RNA gene primer choices (V4 and V3–V4) on microbial community compositions and structures. The results showed that the taxonomic assignment detected by primer V3–V4 was higher compared with that obtained by primer V4, whereas microbial community compositions had strong correlations between the two primers. Microbial beta diversities of ARs can be uncovered by both primers, but the relationships between communities and environmental parameters were inconsistent. The performances of the two primers for water samples were highly consistent, but the inconformity was evident for sediment samples. Given the relatively lower taxonomic classification of primer V4 for sediment samples, primer V3–V4 was recommended for later studies. With the development and advancement of ARs in China, our findings provide a meaningful reference for ecologists focusing on the microbial diversities and ecological functions of these artificial habitats in the future.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Fang, Guangjie; Fisheries College, Ocean University of China, Qingdao, China
Yu, Haolin ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Fisheries College, Ocean University of China, Qingdao, China
Sheng, Huaxiang; Fisheries College, Ocean University of China, Qingdao, China
Tang, Yanli; Fisheries College, Ocean University of China, Qingdao, China
Liang, Zhenlin; Marine College, Shandong University, Weihai, China
Language :
English
Title :
Comparison of 16S rRNA Gene Primers on Studying Microbial Community Composition in Bottom Water and Sediment of Artificial Reefs in Laoshan Bay, China
Anderson, M. J., 2010. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1): 32–46, DOI: 10.1111/j.1442-9993.2001.01070.pp.x.
Barb, J. J., Oler, A. J., Kim, H. S., Chalmers, N., Wallen, G. R., and Cashion, A., 2016. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS One, 11(2): e0148047, DOI: 10.1371/journal.pone.0148047.
Beman, J. M., Popp, B. N., and Francis, C. A., 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME Journal, 2(4): 429–441, DOI: 10.1038/ismej.2007.118.
Birtel, J., Walser, J. C., Pichon, S., Burgmann, H., and Matthews, B., 2015. Estimating bacterial diversity for ecological studies: Methods, metrics, and assumptions. PLoS One, 10(4): e0125356, DOI: 10.1371/journal.pone.0125356.
Bohnsack, J. A., and Sutherland, D. L., 1985. Artificial reef research: A review with recommendations for future priorities. Bulletin of Marine Science, 37(1): 11–39, DOI: 10.1515/botm.1985.28.11.501.
Cai, L., Ye, L., Tong, A. H., Lok, S., and Zhang, T., 2013. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS One, 8(1): e53649, DOI: 10.1371/journal.pone.0053649.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336, DOI: 10.1038/nmeth.f.303.
Chen, Q., Yuan, H., and Chen, P., 2019. Short-term effects of artificial reef construction on the taxonomic diversity and ecoexergy of the macrobenthic faunal community in the Pearl River Estuary, China. Ecological Indicators, 98: 772–782, DOI: 10.1016/j.ecolind.2018.12.001.
Choi, C. J., Bachy, C., Jaeger, G. S., Poirier, C., Sudek, L., Sarma, V., et al., 2017. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Current Biology, 27(1): R15–R16, DOI: 10.1016/j.cub.2016.11.032.
Claesson, M. J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J. R., Ross, R. P., et al., 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research, 38(22): e200, DOI: 10.1093/nar/gkq873.
DeLong, E. F., 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences, 89: 5685–5689, DOI: 10.1073/pnas.89.12.5685.
Edgar, R. C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996–998, DOI: 10.1038/NMETH.2604.
Eleftheriou, A., 2013. Methods for the Study of Marine Benthos. John Wiley & Sons, Ltd., Chichester, 477pp.
Fadeev, E., Cardozo-Mino, M. G., Rapp, J. Z., Bienhold, C., and Boetius, A., 2021. Comparison of two 16S rRNA primers (V3–V4 and V4–V5) for studies of arctic microbial communities. Frontiers in Microbiology, 12: 637526, DOI: 10.3389/fmicb.2021.637526.
Hamady, M., and Knight, R., 2009. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 19(7): 1141–1152, DOI: 10.1101/gr.085464.108.
Hazen, T. C., Rocha, A. M., and Techtmann, S. M., 2013. Advances in monitoring environmental microbes. Current Opinion in Biotechnology, 24(3): 526–533, DOI: 10.1016/j.copbio.2012.10.020.
Heiri, O., Lotter, A. F., and Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25: 101–110, DOI: 10.1023/A:1008119611481.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1, DOI: 10.1093/nar/gks808.
Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., et al., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9): 814–821, DOI: 10.1038/nbt.2676.
Lee, H., Heo, Y. M., Kwon, S. L., Yoo, Y., Kim, D., Lee, J., et al., 2021. Environmental drivers affecting the bacterial community of intertidal sediments in the Yellow Sea. Science of Total Environment, 755: 142726, DOI: 10.1016/j.scitotenv.2020.142726.
Li, N., Zhao, H., Jiang, G., Xu, Q., Tang, J., Li, X., et al., 2020. Phylogenetic responses of marine free-living bacterial community to phaeocystis globosa bloom in Beibu Gulf, China. Frontiers in Microbiology, 11: 1624, DOI: 10.3389/fmicb.2020.01624.
Liao, X., Zhang, C., Yao, L., Li, J., Liu, M., Xu, L., et al., 2014. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: Kinetic and thermodynamic studies. Science of Total Environment, 473–474(6): 530–536, DOI: 10.1016/j.scitotenv.2013.12.055.
Lima, J. S., Zalmon, I. R., and Love, M., 2019. Overview and trends of ecological and socioeconomic research on artificial reefs. Marine Environmental Research, 145: 81–96, DOI: 10.1016/j.marenvres.2019.01.010.
Liu, J., Zheng, Y., Lin, H., Wang, X., Li, M., Liu, Y., et al., 2019. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome, 7(1): 47, DOI: 10.1186/s40168-019-0652-3.
Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J., et al., 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30(5): 434–439, DOI: 10.1038/nbt.2198.
McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., et al., 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6(3): 610–618, DOI: 10.1038/ismej.2011.139.
Michael, C. N., Hilary, G. M., Jacquelynn B., Sharon, L. G., and Joerg G., 2014. Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS One, 9(4): e94249, DOI: 10.1371/journal.pone.0094249.
Needham, D. M., and Fuhrman, J. A., 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology, 1: 16005, DOI: 10.1038/nmicrobiol.2016.5.
Nitin, P. N., Pandurang, K., Andrew, J., Synne, K., Hans, U., and Anette, J., 2017. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS One, 12(3): e0173408, DOI: 10.1371/journal.pone.0173408.
Onywera, H., and Meiring, T. L., 2020. Comparative analyses of Ion Torrent V4 and Illumina V3–V4 16S rRNA gene metabar-coding methods for characterization of cervical microbiota: Taxonomic and functional profiling. Scientific African, 7: e00278, DOI: 10.1016/j.sciaf.2020.e00278.
Parada, A. E., Needham, D. M., and Fuhrman, J. A., 2016. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5): 1403–1414, DOI: 10.1111/1462-2920.13023.
Parulekar, N. N., Kolekar, P., Jenkins, A., Kleiven, S., Utkilen, H., Johansen, A., et al., 2017. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS One, 12(3): e0173408, DOI: 10.1371/journal.pone.0173408.
Perkins, T. L., Clements, K., Baas, J. H., Jago, C. F., Jones, D. L., Malham, S. K., et al., 2014. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS One, 9(11): e112951, DOI: 10.1371/journal.pone.0112951.
Perrine, C., Adrien, V., Céline, L. M., Pierre, E. C., Anne, G., and Marie-Anne, C. B., 2014. Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemosynthetic ecosystems. Applied and Environmental Microbiology, 80(15): 4626–4639, DOI: 10.1128/AEM.00592-14.
Segata, N., Izard, J., Waldron, L. D., Gevers, D., Miropolsky, L., Garrett, W. S., et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6): R60, DOI: 10.1186/gb-2011-12-6-r60.
Soergel, D. A., Dey, N., Knight, R., and Brenner, S. E., 2012. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. The ISME Journal, 6(7): 1440–1444, DOI: 10.1038/ismej.2011.208.
State Bureau of Quality and Technical Supervision of China, 2007. GB/T12763-2007 Specifications for Oceanographic Survey. China Standards Press, Beijing (in Chinese).
Sun, P., Liu, X., Tang, Y., Cheng, W., Sun, R., Wang, X., et al., 2017. The bio-economic effects of artificial reefs: Mixed evidence from Shandong, China. ICES Journal of Marine Science, 74(8): 2239–2248, DOI: 10.1093/icesjms/fsx058.
Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., et al., 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science, 348(6237): 1261359, DOI: 10.1126/science.1261359.
Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., et al., 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681): 457–463, DOI: 10.1038/nature24621.
Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., et al., 2018. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1): 182, DOI: 10.1186/s13568-018-0713-1.
Wang, Y., Sun, J., Fang, E., Guo, B., Dai, Y., Gao, Y., et al., 2019. Impact of artificial reefs on sediment bacterial structure and function in Bohai Bay. Canadian Journal of Microbiology, 65(3): 191–200, DOI: 10.1139/cjm-2018-0157.
Willis, C., Desai, D., and LaRoche, J., 2019. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiology Letters, 366(13): fnz152, DOI: 10.1093/femsle/fnz152.
Yang, B., Wang, Y., and Qian, P. Y., 2016. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17(2016): 135, DOI: 10.1186/s12859-016-0992-y.
Yeh, Y. C., Needham, D. M., Sieradzki, E. T., Fuhrman, J. A., and Gregory, C. J., 2018. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. Msystems, 3(3): e00023–18, DOI: 10.1128/mSystems.00023-18.
Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., and Elshahed, M. S., 2009. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied and Environmental Microbiology, 75(16): 5227–5236, DOI: 10.1128/AEM.00592-09.
Yu, L. Y., Zhang, W. J., Liu, L. M., and Yang, J., 2015. Determining microeukaryotic plankton community around Xiamen Island, southeast China, using Illumina MiSeq and PCR-DGGE Techniques. PLoS One, 10(5): e0127721, DOI: 10.1371/journal.pone.0127721.
Zhang, W., Mo, Y., Yang, J., Zhou, J., Lin, Y., Isabwe, A., et al., 2018. Genetic diversity pattern of microeukaryotic communities and its relationship with the environment based on PCR-DGGE and T-RFLP techniques in Dongshan Bay, southeast China. Continental Shelf Research, 164: 1–9, DOI: 10.1016/j.csr.2018.05.006.