[en] Raman spectroscopy is an analytical technique of choice for Earth and planetary sciences, which was recently selected as part of robotic exploration missions on Mars. Indeed, several miniaturized Raman spectrometers have been included into the scientific payload of rovers for the remote surface exploration of Mars: SuperCam and Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) for the NASA Mars 2020 mission and the Raman laser spectrometer (RLS) for the European Space Agency's (ESA) ExoMars mission. In preparation for these missions, a number of Mars analogue biogeological samples retrieved on Earth are extensively interrogated using Raman spectrometers, including flight prototype instruments but not only. Some studies also used flight representative portable instruments, as well as benchtop instruments. Commonly, authors reported the excitation laser wavelength and its power but often omitted the laser spot size on the sample which is a key factor for comparing several studies in term of spectrometer capabilities. In this study, we reported an easy, fast and universal experimental approach for determining the effective laser spot size, defined as the diameter of the sample section which is effectively probed by the Raman spectrometer during the analyses. Here, we characterized the effective laser spot size for a benchtop micro-Raman system and two different portable spectrometers, using a standard silicon wafer and gypsum powders with various average grain sizes. The dependence of the laser spot size with the grain size of the samples is discussed with regards to qualitative and quantitative analyses of solid dispersions in the scope of remote planetary missions.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Demaret, Lucas ; Université de Liège - ULiège > Molecular Systems (MolSys)
Hutchinson, Ian B; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Lerman, Hannah N; Department of Physics and Astronomy, University of Leicester, Leicester, UK
McHugh, Melissa; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique ; Department of Physics and Astronomy, University of Leicester, Leicester, UK
Language :
English
Title :
Knife-Edge Technique Using Raman Spectrometers to Determine the Effective Laser Spot Size on Powders: Implications for Planetary Exploration.
Vitek P., Ali E.M.A., Edwards H.G.M., Jehlička J., et al. “Evaluation of Portable Raman Spectrometer with 1064 nm Excitation for Geological and Forensic Applications”. Spectrochim. Acta, Part A. 2012. 86: 320–327. 10.1016/j.saa.2011.10.043
Vandenabeele P., Edwards H.G.M., Jehlička J.. “The Role of Mobile Instrumentation in Novel Applications of Raman Spectroscopy: Archaeometry, Geosciences, and Forensics”. Chem. Soc. Rev. 2014. 43(8): 2628–2649. 10.1039/c3cs60263j
Kong K., Kendall C., Stone N., Notingher I.. “Raman Spectroscopy for Medical Diagnostics: From In-Vitro Biofluid Assays to In-Vivo Cancer Detection”. Adv. Drug Deliv. Rev. 2015. 89: 121–134. 10.1016/j.addr.2015.03.009
Jehlička J., Culka A.. “Critical Evaluation of Portable Raman Spectrometers: From Rock Outcrops and Planetary Analogs to Cultural Heritage: A Review”. Anal. Chim. Acta. 2022. 1209: 339027. 10.1016/j.aca.2021.339027
Vago J.L., Westall F., Coates A.J., Jaumann R., et al. “Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover”. Astrobiology. 2017. 17(6–7): 471–510. 10.1089/ast.2016.1533
Rull F., Maurice S., Hutchinson I., Moral A., et al. “The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars”. Astrobiology. 2017. 17(6–7): 627–654. 10.1089/ast.2016.1567
Bhartia R., Beegle R.W., Deflores L., Abbey W., et al. “Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation”. Sci. Space Rev. 2021. 217: 58. 10.1007/s11214-021-00812-z
Edwards H.G.M., Villar S.E.J., Jehlička J., Munshi T.. “FT-Raman Spectroscopic Study of Calcium-Rich and Magnesium-Rich Carbonate Minerals”. Spectrochim. Acta, Part A. 2005. 61(10): 2273–2280. 10.1016/j.saa.2005.02.026
Wang A., Korotev R.L., Jolliff B.L., Ling Z.. “Raman Imaging of Extraterrestrial Materials”. Planet. Space Sci. 2015. 112: 23–34. 10.1016/j.pss.2014.10.005
Stromberg J.M., Parkinson A., Morison M., Cloutis E., et al. “Biosignature Detection by Mars Rover Equivalent Instruments in Samples from the CanMars Mars Sample Return Analogue Deployment”. Planet. Space Sci. 2019. 176: 104683. 10.1016/j.pss.2019.06.007
Rull F., Veneranda M., Manrique-Martinez J.A., Sanz-Arranz A., et al. “Spectroscopic Study of Terrestrial Analogues to Support Rover Missions to Mars: A Raman-Centred Review”. Anal. Chim. Acta. 2022. 1209: 339003. 10.1016/j.aca.2021.339003
Demaret L., Hutchinson I.B., Ingley R., Edwards H.G.M., et al. “Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy”. Astrobiology. 2022. 22(9): 1081–1098. 10.1089/ast.2021.0128
Edwards H.G.M., Vandenabeele P., Jorge-Villar S.E., Carter E.A., et al. “The Rio Tinto Mars Analogue Site: An Extremophilic Raman Spectroscopic Study”. Spectrochim. Acta, Part A. 2007. 68(4): 1133–1137. 10.1016/j.saa.2006.12.080
Böttger U., de Vera J.-P., Fritz J., Weber I., et al. “Optimizing the Detection of Carotene in Cyanobacteria in a Martian Regolith Analogue with a Raman Spectrometer for the ExoMars Mission”. Planet. Space Sci. 2012. 60(1): 356–362. 10.1016/j.pss.2011.10.017
Vitek P., Jehlička J., Edwards H.G.M., Hutchinson I., et al. “The Miniaturized Raman System and Detection of Traces of Life in Halite from the Atacama Desert: Some Considerations for the Search for Life Signatures on Mars”. Astrobiology. 2012. 12(12): 1095–1099. 10.1089/ast.2012.0879
Edwards H.G.M., Hutchinson I.B., Ingley R., Parnell J., et al. “Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission”. Astrobiology. 2013. 13(6): 543–549. 10.1089/ast.2012.0872
Malherbe C., Ingley R., Hutchinson I., Edwards H., et al. “Biogeological Analysis of Desert Varnish Using Portable Raman Spectrometers”. Astrobiology. 2015. 15(6): 442–452. 10.1089/ast.2014.1265
Marshall C.P., Olcott Marshall A.. “Challenges Analyzing Gypsum on Mars by Raman Spectroscopy”. Astrobiology. 2015. 15(9): 761–769. 10.1089/ast.2015.1334
Vandenabeele P., Jehlička J., Vitek P., Edwards H.G.M.. “On the Definition of Raman Spectroscopic Detection Limits for the Analysis of Biomarkers in Solid Matrices”. Planet. Space Sci. 2012. 62(1): 48–54. 10.1016/j.pss.2011.12.006
McCreery R.L.. Raman Spectroscopy for Chemical Analysis. New York: John Wiley and Sons, 2000.
Letalick D., Renhorn I.. “Instrument for Measuring Laser-Beam Profiles”. Rev. Sci. Instrum. 1987. 58(5): 765–767. 10.1063/1.1139628
Jorge K.C., Riva R., Rodrigues N.A.S., Sakamoto J.M.S., Destro M.G.. “Scattered Light Imaging Method (SLIM) for Characterization of Arbitrary Laser Beam Intensity Profiles”. Appl. Opt. 2014. 53(20): 4555–4564. 10.1364/AO.53.004555
Shayler P.J.. “Laser Beam Distribution in the Focal Region”. Appl. Opt. 1978. 17(17): 2673–2684. 10.1364/AO.17.002673
Liu J.M.. “Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes”. Opt. Lett. 1982. 7(5): 196–198. 10.1364/OL.7.000196
Khosrofian J.M., Garetz B.A.. “Measurement of a Gaussian Laser Beam Diameter Through the Direct Inversion of Knife-Edge Data”. Appl. Opt. 1983. 22(21): 3406–3410. 10.1364/AO.22.003406
Chiu Y., Pan J.-H.. “Micro Knife-Edge Optical Measurement Device in a Silicon-on-Insulator Substrate”. Opt. Express. 2007. 15(10): 6367–6373. 10.1364/OE.15.006367
de Araújo M.A.C., Silva R., de Lima E., Pereira D.P., de Oliveira P.C.. “Measurement of Gaussian Laser Beam Radius Using the Knife-Edge Technique: Improvement on Data Analysis”. Appl. Opt. 2009. 48(2): 393–396. 10.1364/AO.48.000393
Hauer P., Grand J., Djorovic A., Willmott G. R., Le Ru E.C.. “Spot Size Engineering in Microscope-Based Laser Spectroscopy”. J. Phys. Chem. C. 2016. 120(37): 21104–21113. 10.1021/acs.jpcc.6b04574
Foucher F.. “Influence of Laser Shape on Thermal Increase During Micro-Raman Spectroscopy Analyses”. J. Raman Spectrosc. 2022. 53(3): 664–676. 10.1002/jrs.6230
de Wolf I.. “Semiconductors”. In: M.J. Pelletier, editor. Analytical Applications of Raman Spectroscopy. Malden, Massachusetts: Blackwell Science, 1999. Chap. 10, Pp. 435–472.
Demaret L., Hutchinson I.B., Eppe G., Malherbe C.. “Analytical Strategy for Representative Subsampling of Raman-Based Robotic Planetary Exploration Missions: The Case Study of Solid Dispersions of β-Carotene and l-Cysteine in Gypsum”. J. Raman Spectrosc. 2020. 51(9): 1624–1635. 10.1002/jrs.5705
Demaret L., Hutchinson I.B., Eppe G., Malherbe C.. “Quantitative Analysis of Binary and Ternary Organo-Mineral Solid Dispersions by Raman Spectroscopy for Robotic Planetary Exploration Missions on Mars”. Analyst. 2021. 146(23): 7306–7319. 10.1039/D1AN01514A
Kogelnik H., Li T. “Laser Beams and Resonators“. Appl. Opt. 1966. 5(10): 1550–1567. 10.1364/AO.5.001550
Demtröder W.. “Optics of Gaussian Beams”. Laser Spectroscopy 1: Basic Principles. Berlin; Heidelberg: Springer, 2014. Pp. 421–429. 10.1007/978-3-642-53859-9_7
Hutchinson I.B., Ingley R., Edwards H.G.M., Harris L., et al. “Raman Spectroscopy on Mars: Identification of Geological and Bio-Geological Signatures in Martian Analogues Using Miniaturized Raman Spectrometers”. Philos. Trans. R. Soc., A. 2014. 372(2030): 20140204. 10.1098/rsta.2014.0204
Haskin L.A., Wang A., Rockow K.M., Jolliff B.L., et al. “Raman Spectroscopy for Mineral Identification and Quantification for In Situ Planetary Surface Analysis: A Point Count Method”. J. Geophys. Res.: Planets. 1997. 102(E8): 19293–19306. 10.1029/97JE01694
Wang H., Mann C.K., Vickers T.J.. “Effect of Powder Properties on the Intensity of Raman Scattering by Crystalline Solids”. Appl. Spectrosc. 2002. 56(12): 1538–1544. 10.1366/000370202321115779
Schrader B., Hoffman A., Keller S.. “Near-Infrared Fourier Transform Raman Spectroscopy: Facing Absorption and Background”. Spectrochim. Acta, Part A. 1991. 47(9–10): 1135–1148. 10.1016/0584-8539(91)80201-S
Duy P.K., Chun S., Chung H.. “Characterization of Raman Scattering in Solid Samples with Different Particle Sizes and Elucidation on the Trends of Particle Size-Dependent Intensity Variations in Relation to Changes in the Sizes of Laser Illumination and Detection Area”. Anal. Chem. 2017. 89(22): 11937–11943. 10.1021/acs.analchem.7b01400
Wang A.. “Some Grain Size Effects on Raman Scattering Intensity for In Situ Measurements on Rocks and Soils Experimental Tests and Modeling”. 30th Annual Lunar Planetary Science Conference. Houston, Texas; 15–20 March 1999. Abstract no. 1644. https://www.lpi.usra.edu/meetings/LPSC99/pdf/1644.pdf [accessed 19 November 2025].
Chio C.H., Sharma S.K., Lucey P.G., Muenow D.W.. “Effects of Particle Size and Laser-Induced Heating on the Raman Spectra of Alpha Quartz Grains”. Appl. Spectrosc. 2003. 57(7): 774–783. 10.1366/000370203322102852
Foucher F., Lopez-Reyes G., Bost N., Rull-Perez F., et al. “Effect of Grain Size Distribution on Raman Analyses and the Consequences for In Situ Planetary Missions”. J. Raman Spectrosc. 2013. 44: 916–925. 10.1002/jrs.4307
Pellow-Jarman M.V., Hendra P.J., Lehnert R.J.. “The Dependence of Raman Signal Intensity on Particle Size for Crystal Powders”. Vib. Spectrosc. 1996. 12(2): 257–261. 10.1016/0924-2031(96)00023-9
Kristova P., Hopkinson L.J., Rutt K.J., Hunter H., Cressey G.. “Quantitative Analyses of Powdered Multi-Minerallic Carbonate Aggregates Using a Portable Raman Spectrometer”. Am. Mineral. 2013. 98(2–3): 401–409. 10.2138/am.2013.4305
Kristova P., Hopkinson L.J., Rutt K.J.. “The Effect of the Particle Size on the Fundamental Vibrations of the [CO32–] Anion in Calcite”. J. Phys. Chem. A. 2015. 119: 4891–4897. 10.1021/acs.jpca.5b02942
Indelicato C., Osticioli I., Agresti J., Ciofini D., et al. “Exploring Grain Sizing of Sedimentary Calcareous Rocks Using Raman Spectroscopy”. Eur. Phys. J. Plus. 2022. 137: 359. 10.1140/epjp/s13360-022-02536-7
Breitenfeld L.B., Dyar M.D., Sklute E.C., Legett C.. “Effect of Particle Size on Raman Signal Strength of Silicate Minerals”. J. Raman Spectrosc. 2025. 56(2): 184–187. 10.1002/jrs.6745