carbon dioxide removal; CDR; greenhouse gas removal; life cycle assessment; NET; transport optimization; Biochar; Carbon dioxide removal; Climate change mitigation; Gas removal; Greenhouse gas removal; Greenhouses gas; Optimisations; Transport optimization; Forestry; Renewable Energy, Sustainability and the Environment; Agronomy and Crop Science; Waste Management and Disposal
Abstract :
[en] Carbon dioxide removal (CDR) practices are essential to mitigating the adverse impacts of climate change. Some CDR practices depend on the availability and accessibility of feedstocks. The climate change mitigation potential of these practices relies on the difference between their location-specific efficiency and the greenhouse gas (GHG) emissions associated with establishing them. Focusing on biochar from forestry harvest residues in British Columbia (Canada), this manuscript demonstrates that optimizing the selection of biochar application areas and transportation routes can double the climate change mitigation potential of the practice across the province, as compared to random selection. We argue that spatially explicit ex-ante modeling of CDR potential and transportation optimization should become the norm for any new relevant CDR project to ensure the maximization of its climate change mitigation potential.
Lefebvre, David ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Echanges Eau - Sol - Plantes ; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Heitz, Matthieu; Department of Mathematics, University of British Columbia, Vancouver, Canada
Edgar, Jack; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Bi, Xiaotao; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
Meersmans, Jeroen ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Language :
English
Title :
Maximizing Biochar Climate Change Mitigation Impact Through Optimized Logistics
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. “Network Flows: Theory, Algorithms, and Applications.” https://api.semanticscholar.org/CorpusID:12577796.
Ayer, N. W., and G. Dias. 2018. “Supplying Renewable Energy for Canadian Cement Production: Life Cycle Assessment of Bioenergy From Forest Harvest Residues Using Mobile Fast Pyrolysis Units.” Journal of Cleaner Production 175: 237–250. https://doi.org/10.1016/j.jclepro.2017.12.040.
Barry, D., C. Barbiero, C. Briens, and F. Berruti. 2019. “Pyrolysis as an Economical and Ecological Treatment Option for Municipal Sewage Sludge.” Biomass and Bioenergy 122: 472–480. https://doi.org/10.1016/j.biombioe.2019.01.041.
BC Hydro & Industrial Forestry Service Ltd. 2018. “Wood Based Biomass in British Columbia and Its Potential for New Electricity Generation Prepared for BC Hydro's Long Term Planning Process.” March, 1–56. https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/corporate/regulatory-planning-documents/integrated-resource-plans/current-plan/rou-characterization-wood-based-biomass-report-201507-industrial-forestry-service.pdf.
Blackburn, K. 2017. “Bulkley Timber Supply Area Biomass Availability Estimation (Vol. 52, Issue 52).” https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/timber-tenures/fibre-recovery/tr2017n52.pdf.
Brassard, P., S. Godbout, F. Pelletier, V. Raghavan, and J. H. Palacios. 2018. “Pyrolysis of Switchgrass in an Auger Reactor for Biochar Production: A Greenhouse Gas and Energy Impacts Assessment.” Biomass and Bioenergy 116: 99–105. https://doi.org/10.1016/j.biombioe.2018.06.007.
Ciroth, A., C. Noi, T. Lohse, and M. Srocka. 2020. “openLCA 1.10 – Comprehensive User Manual. V 1.10.2, 127.” https://www.openlca.org/learning/.
Cornelissen, G., E. Sørmo, R. K. A. de la Rosa, and B. Ladd. 2023. “Flame Curtain Kilns Produce Biochar From Dry Biomass With Minimal Methane Emissions.” Science of the Total Environment 903: 166547. https://doi.org/10.1016/j.scitotenv.2023.166547.
Cowie, A. L. 2023. “Biochar as a Fast Track to Net Zero.” Nature Food 4: 203–204. https://doi.org/10.1038/s43016-023-00714-z.
Cowie, A. L., and A. J. Cowie. 2023. “Life Cycle Assessment of Greenhouse Gas Mitigation Benefits of Biochar Case Study Report.” (Issue March). https://doi.org/10.13140/RG.2.2.34348.13442.
Environment and Climate Change Canada. 2023. “National Inventory Report 1990–2021: Greenhouse Gas Sources and Sinks in Canada.” https://publications.gc.ca/site/eng/9.506002/publication.html.
Field, J. L., C. M. H. Keske, G. L. Birch, M. W. Defoort, and M. Francesca Cotrufo. 2013. “Distributed Biochar and Bioenergy Coproduction: A Regionally Specific Case Study of Environmental Benefits and Economic Impacts.” GCB Bioenergy 5, no. 2: 177–191. https://doi.org/10.1111/gcbb.12032.
Friedlingstein, P., M. O'Sullivan, M. W. Jones, et al. 2023. “Global Carbon Budget 2023.” Earth System Science Data 15, no. 12: 5301–5369. https://doi.org/10.5194/essd-15-5301-2023.
Geden, O., M. J. Gidden, W. F. Lamb, J. C. Minx, and S. M. Smith. 2024. “The State of Carbon Dioxide Removal 2024 – 2nd Edition.” https://doi.org/10.17605/OSF.IO/F85QJ.
Giraud, T. 2022. “Osrm: Interface Between R and the OpenStreetMap-Based Routing Service OSRM.” Journal of Open Source Software 7, no. 78: 4574. https://doi.org/10.21105/joss.04574.
Government of Canada. 2023. “Vegetation Resource Inventory (2002–2022). VRI.” https://catalogue.data.gov.bc.ca/dataset.
Hammond, J., S. Shackley, S. Sohi, and P. Brownsort. 2011. “Prospective Life Cycle Carbon Abatement for Pyrolysis Biochar Systems in the UK.” Energy Policy 39, no. 5: 2646–2655. https://doi.org/10.1016/j.enpol.2011.02.033.
Höglund, R., K. Niparko, Q. Servais-Laval, et al. 2024. “Trending on Track? – CDR.fyi 2023 Year in Review.” CDR.Fyi.
Jacobson, R., S. Sokhansanj, D. Roeser, J. Hansen, B. Gopaluni, and X. Bi. 2021. “A Cost Analysis of Mobile and Stationary Pellet Mills for Mitigating Wildfire Costs.” Journal of Sustainable Bioenergy Systems 11, no. 3: 131–143. https://doi.org/10.4236/jsbs.2021.113010.
Jeswani, H. K., D. M. Saharudin, and A. Azapagic. 2022. “Environmental Sustainability of Negative Emissions Technologies: A Review.” Sustainable Production and Consumption 33: 608–635. https://doi.org/10.1016/j.spc.2022.06.028.
Kane, S., and S. A. Miller. 2024. “Predicting Biochar Properties and Pyrolysis Life-Cycle Inventories With Compositional Modeling.” Bioresource Technology 399: 130551. https://doi.org/10.1016/j.biortech.2024.130551.
Király, Z., and P. Kovács. 2012. “Efficient Implementations of Minimum-Cost Flow Algorithms.” https://doi.org/10.48550/arXiv.1207.6381.
Lefebvre, D., J. T. Cornelis, J. Meersmans, J. Edgar, M. Hamilton, and X. Bi. 2024. “Environmental Factors Controlling Biochar Climate Change Mitigation Potential in British Columbia's Agricultural Soils.” GCB Bioenergy 16, no. 1: 13109. https://doi.org/10.1111/gcbb.13109.
Lefebvre, D., S. Fawzy, C. A. Aquije, A. I. Osman, K. T. Draper, and T. A. Trabold. 2023. “Biomass Residue to Carbon Dioxide Removal: Quantifying the Global Impact of Biochar.” Biochar 5, no. 1: 65. https://doi.org/10.1007/s42773-023-00258-2.
Lefebvre, D., P. Goglio, A. Williams, et al. 2019. “Assessing the Potential of Soil Carbonation and Enhanced Weathering Through Life Cycle Assessment: A Case Study for Sao Paulo State, Brazil.” Journal of Cleaner Production 233: 468–481. https://doi.org/10.1016/j.jclepro.2019.06.099.
Lehmann, J., A. Cowie, C. A. Masiello, et al. 2021. “Biochar in Climate Change Mitigation.” Nature Geoscience 14, no. 12: 883–892. https://doi.org/10.1038/s41561-021-00852-8.
Leme, M. M. V., O. J. Venturini, E. E. S. Lora, et al. 2018. “Electricity Generation From Pyrolysis Gas Produced in Charcoal Manufacture: Technical and Economic Analysis.” Journal of Cleaner Production 194: 219–242. https://doi.org/10.1016/j.jclepro.2018.05.101.
Lu, H. R., and A. El Hanandeh. 2019. “Life Cycle Perspective of Bio-Oil and Biochar Production From Hardwood Biomass; What Is the Optimum Mix and What to Do With It?” Journal of Cleaner Production 212: 173–189. https://doi.org/10.1016/j.jclepro.2018.12.025.
Lugato, E., F. P. Vaccari, L. Genesio, et al. 2013. “An Energy-Biochar Chain Involving Biomass Gasification and Rice Cultivation in Northern Italy.” GCB Bioenergy 5, no. 2: 192–201. https://doi.org/10.1111/gcbb.12028.
Marzeddu, S., A. Cappelli, A. Ambrosio, M. A. Décima, P. Viotti, and M. R. Boni. 2021. “A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy.” Land 10, no. 11: 1256. https://doi.org/10.3390/land10111256.
Matuštík, J., M. Pohořelý, and V. Kočí. 2021. “Is Application of Biochar to Soil Really Carbon Negative? The Effect of Methodological Decisions in Life Cycle Assessment.” Science of the Total Environment 807: 151058. https://doi.org/10.1016/j.scitotenv.2021.151058.
Moriana, R., F. Vilaplana, and M. Ek. 2015. “Forest Residues as Renewable Resources for Bio-Based Polymeric Materials and Bioenergy: Chemical Composition, Structure and Thermal Properties.” Cellulose 22, no. 5: 3409–3423. https://doi.org/10.1007/s10570-015-0738-4.
Muñoz, E., G. Curaqueo, M. Cea, L. Vera, and R. Navia. 2017. “Environmental Hotspots in the Life Cycle of a Biochar-Soil System.” Journal of Cleaner Production 158: 1–7. https://doi.org/10.1016/j.jclepro.2017.04.163.
Quirk, R. G., L. Van Zwieten, S. Kimber, A. Downie, S. Morris, and J. Rust. 2012. “Utilization of Biochar in Sugarcane and Sugar-Industry Management.” Sugar Tech 14, no. 4: 321–326. https://doi.org/10.1007/s12355-012-0158-9.
R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Rajabi Hamedani, S., T. Kuppens, R. Malina, E. Bocci, A. Colantoni, and M. Villarini. 2019. “Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium.” Energies 12, no. 11: 2166. https://doi.org/10.3390/en12112166.
Robb, S., and P. Dargusch. 2018. “A Financial Analysis and Life-Cycle Carbon Emissions Assessment of Oil Palm Waste Biochar Exports From Indonesia for Use in Australian Broad-Acre Agriculture.” Carbon Management 9, no. 2: 105–114. https://doi.org/10.1080/17583004.2018.1435958.
Sahoo, K., A. Upadhyay, T. Runge, R. Bergman, M. Puettmann, and E. Bilek. 2021. “Life-Cycle Assessment and Techno-Economic Analysis of Biochar Produced From Forest Residues Using Portable Systems.” International Journal of Life Cycle Assessment 26, no. 1: 189–213. https://doi.org/10.1007/s11367-020-01830-9.
Smyth, C. E., Z. Xu, T. C. Lemprière, and W. A. Kurz. 2020. “Climate Change Mitigation in British Columbia's Forest Sector: GHG Reductions, Costs, and Environmental Impacts.” Carbon Balance and Management 15, no. 1: 21. https://doi.org/10.1186/s13021-020-00155-2.
Veksha, A., H. McLaughlin, D. B. Layzell, and J. M. Hill. 2014. “Pyrolysis of Wood to Biochar: Increasing Yield While Maintaining Microporosity.” Bioresource Technology 153: 173–179. https://doi.org/10.1016/j.biortech.2013.11.082.
Wang, H., R. Clift, and X. Bi. 2022. “Part II Clean Energy Strategies for Mitigating Greenhouse Gas Emissions in British Columbia (Issue January).” https://cerc.sites.olt.ubc.ca/files/2022/01/22-01-30-White-paper-Part-II.pdf.
Wang, H., S. Zhang, X. Bi, and R. Clift. 2020. “Greenhouse Gas Emission Reduction Potential and Cost of Bioenergy in British Columbia, Canada.” Energy Policy 138: 111285. https://doi.org/10.1016/j.enpol.2020.111285.
Watts, S. B., and L. Tolland. 2005. Forestry Handbook for British Columbia Forestry Undergraduate Society. University of British Columbia.
Wernet, G., C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, and B. B. Weidema. 2016. “The Ecoinvent Database Version 3 (Part I): Overview and Methodology.” International Journal of Life Cycle Assessment 21, no. 9: 1218–1230. https://doi.org/10.1007/s11367-016-1087-8.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-V.
Wilson, K. J., W. Bekker, and S. I. Feher. 2024. “Producing, Characterizing and Quantifying Biochar in the Woods Using Portable Flame Cap Kilns.” Journal of Visualized Experiments 2024, no. 203: 1–14. https://doi.org/10.3791/65543.
Xia, F., Z. Zhang, Q. Zhang, H. Huang, and X. Zhao. 2024. “Life Cycle Assessment of Greenhouse Gas Emissions for Various Feedstocks-Based Biochars as Soil Amendment.” Science of the Total Environment 911: 168734. https://doi.org/10.1016/j.scitotenv.2023.168734.