Cell Cycle; Cell Division; Nutrients; Bacteria/genetics; Metabolic Networks and Pathways/genetics; Bacteria; Metabolic Networks and Pathways; Microbiology; Microbiology (medical); Infectious Diseases
Abstract :
[en] Nutrients availability is the sinews of the war for single microbial cells, driving growth and cell cycle progression. Therefore, coordinating cellular processes with nutrients availability is crucial, not only to survive upon famine or fluctuating conditions but also to rapidly thrive and colonize plentiful environments. While metabolism is traditionally seen as a set of chemical reactions taking place in cells to extract energy and produce building blocks from available nutrients, numerous connections between metabolic pathways and cell cycle phases have been documented. The few regulatory systems described at the molecular levels show that regulation is mediated either by a second messenger molecule or by a metabolite and/or a metabolic enzyme. In the latter case, a secondary moonlighting regulatory function evolved independently of the primary catalytic function of the enzyme. In this review, we summarize our current understanding of the complex cross-talks between metabolism and cell cycle in bacteria.
Beaufay, François ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP) ; Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur (5000), Belgium
Coppine, Jérôme ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur (5000), Belgium
Hallez, Régis; Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur (5000), Belgium, Namur Research College (NARC), University of Namur, Namur (5000), Belgium, WELBIO, University of Namur, Namur (5000), Belgium. Electronic address: regis.hallez@unamur.be
Language :
English
Title :
When the metabolism meets the cell cycle in bacteria.
Work in the R.H. lab is supported by the Fonds de la Recherche Scientifique - FNRS (F.R.S. – FNRS) with an Incentive Grant for Scientific Research (MIS F.4516.19F) and a Welbio Starting Grant ( WELBIO-CR-2019S-05 ). F.B. was holding a FRIA fellowship from the F.R.S. – FNRS. R.H. is a Research Associate from the F.R.S. – FNRS.
Ewald, J.C., How yeast coordinates metabolism, growth and division. Curr Opin Microbiol 45 (2018), 1–7.
Wang, J.D., Levin, P.A., Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7 (2009), 822–827.
Ferullo, D.J., Lovett, S.T., The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet, 4, 2008, e1000300.
Hallez, R., Delaby, M., Sanselicio, S., Viollier, P.H., Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 15 (2017), 137–148.
Irving, S.E., Choudhury, N.R., Corrigan, R.M., The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol, 2020, 10.1038/s41579-020-00470-y.
Ronneau, S., Hallez, R., Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol Rev 43 (2019), 389–400.
Ross, W., Sanchez-Vazquez, P., Chen, A.Y., Lee, J.H., Burgos, H.L., Gourse, R.L., ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol Cell 62 (2016), 811–823.
Ross, W., Vrentas, C.E., Sanchez-Vazquez, P., Gaal, T., Gourse, R.L., The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50 (2013), 420–429.
Chiaramello, A.E., Zyskind, J.W., Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 172 (1990), 2013–2019.
Riber, L., Lobner-Olesen, A., Inhibition of Escherichia coli chromosome replication by rifampicin treatment or during the stringent response is overcome by de novo DnaA protein synthesis. Mol Microbiol, 2020 This work shows that de novo synthesis of DnaA, from a (p)ppGpp-insensitive promoter, in E. coli cells experiencing high (p)ppGpp levels allows DNA replication initiation. This suggests that (p)ppGpp arrests chromosome replication initiation essentially by limiting production of active DnaA, at least in E. coli; 114: 906-919.
Sinha, A.K., Lobner-Olesen, A., Riber, L., Bacterial chromosome replication and DNA repair during the stringent response. Front Microbiol, 11, 2020, 582113.
Kraemer, J.A., Sanderlin, A.G., Laub, M.T., The stringent response inhibits DNA replication initiation in E. coli by modulating supercoiling of oriC. mBio, 10, 2019.
Fernandez-Coll, L., Maciag-Dorszynska, M., Tailor, K., Vadia, S., Levin, P.A., Szalewska-Palasz, A., Cashel, M., The absence of (p)ppGpp renders initiation of Escherichia coli chromosomal DNA synthesis independent of growth rates. mBio, 11, 2020 This paper demonstrates that basal levels of (p)ppGpp coordinate DNA replication initiation with growth rate in E. coli.
Imholz, N.C.E., Noga, M.J., van den Broek, N.J.F., Bokinsky, G., Calibrating the bacterial growth rate speedometer: a re-evaluation of the relationship between basal ppGpp, growth, and RNA synthesis in Escherichia coli. Front Microbiol, 11, 2020, 574872.
Quon, K.C., Yang, B., Domian, I.J., Shapiro, L., Marczynski, G.T., Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci U S A 95 (1998), 120–125.
Boutte, C.C., Crosson, S., The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 80 (2011), 695–714.
Britos, L., Abeliuk, E., Taverner, T., Lipton, M., McAdams, H., Shapiro, L., Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One, 6, 2011, e18179.
Gonzalez, D., Collier, J., Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J Bacteriol 196 (2014), 2514–2525.
Gorbatyuk, B., Marczynski, G.T., Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 55 (2005), 1233–1245.
Lesley, J.A., Shapiro, L., SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 190 (2008), 6867–6880.
Leslie, D.J., Heinen, C., Schramm, F.D., Thuring, M., Aakre, C.D., Murray, S.M., Laub, M.T., Jonas, K., Nutritional control of DNA replication initiation through the proteolysis and regulated translation of DnaA. PLoS Genet, 11, 2015, e1005342.
Jonas, K., Liu, J., Chien, P., Laub, M.T., Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 154 (2013), 623–636.
Liu, J., Francis, L.I., Jonas, K., Laub, M.T., Chien, P., ClpAP is an auxiliary protease for DnaA degradation in Caulobacter crescentus. Mol Microbiol 102 (2016), 1075–1085.
Wargachuk, R., Marczynski, G.T., The Caulobacter crescentus homolog of DnaA (HdaA) also regulates the proteolysis of the replication initiator protein DnaA. J Bacteriol 197 (2015), 3521–3532.
Gross, M.H., Konieczny, I., Polyphosphate induces the proteolysis of ADP-bound fraction of initiator to inhibit DNA replication initiation upon stress in Escherichia coli. Nucleic Acids Res 48 (2020), 5457–5466 In this paper, the authors show that polyphosphate exclusively binds to DnaA-ADP, which selectively stimulates Lon-dependent proteolysis of the ADP bound form of DnaA in E. coli.
Maciag, M., Nowicki, D., Janniere, L., Szalewska-Palasz, A., Wegrzyn, G., Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb Cell Fact, 10, 2011, 19.
Tymecka-Mulik, J., Boss, L., Maciag-Dorszynska, M., Matias Rodrigues, J.F., Gaffke, L., Wosinski, A., Cech, G.M., Szalewska-Palasz, A., Wegrzyn, G., Glinkowska, M., Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS One, 12, 2017, e0176050.
Zhang, Q., Zhou, A., Li, S., Ni, J., Tao, J., Lu, J., Wan, B., Li, S., Zhang, J., Zhao, S., et al. Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. Sci Rep, 6, 2016, 30837.
Shi, L., Tu, B.P., Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110 (2013), 7318–7323.
Murray, H., Koh, A., Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis. PLoS Genet, 10, 2014, e1004731.
Berge, M., Pezzatti, J., Gonzalez-Ruiz, V., Degeorges, L., Mottet-Osman, G., Rudaz, S., Viollier, P.H., Bacterial cell cycle control by citrate synthase independent of enzymatic activity. eLife, 9, 2020 This paper describes a moonlighting function for one of the three citrate synthase paralogs, which controls cell cycle progression in C. crescentus by regulating the activity of the cell cycle regulator CtrA.
Pereira, D.S., Donald, L.J., Hosfield, D.J., Duckworth, H.W., Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J Biol Chem 269 (1994), 412–417.
Denapoli, J., Tehranchi, A.K., Wang, J.D., Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis. Mol Microbiol 88 (2013), 93–104.
Maciag, M., Kochanowska, M., Lyzen, R., Wegrzyn, G., Szalewska-Palasz, A., ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid 63 (2010), 61–67.
Wang, J.D., Sanders, G.M., Grossman, A.D., Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128 (2007), 865–875.
Janniere, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A.F., Chapuis, J., Bolotin, A., Titok, M., et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS One, 2, 2007, e447.
Nouri, H., Monnier, A.F., Fossum-Raunehaug, S., Maciag-Dorszynska, M., Cabin-Flaman, A., Kepes, F., Wegrzyn, G., Szalewska-Palasz, A., Norris, V., Skarstad, K., et al. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 25 (2018), 641–653, 10.1101/2020.07.07.191163.
Horemans, S., Pitoulias, M., Holland, A., Soultanas, P., Janniere, L., Glycolytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation. bioRxiv, 2020.
Cai, L., Tu, B.P., Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 28 (2012), 59–87.
Hartl, J., Kiefer, P., Kaczmarczyk, A., Mittelviefhaus, M., Meyer, F., Vonderach, T., Hattendorf, B., Jenal, U., Vorholt, J.A., Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab 2 (2020), 153–166 This paper describes, for the first time in bacteria, that abundance of ∼400 metabolites, including glutathione, fluctuates along the C. crescentus cell cycle. The authors also show that glutathione indirectly controls cytokinesis by regulating the activity of a potassium efflux system.
Narayanan, S., Janakiraman, B., Kumar, L., Radhakrishnan, S.K., A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 29 (2015), 1175–1187 In this work, the authors show that the redox state of the cytoplasm oscillates along the cell cycle and that the oscillating redox level is used by Caulobacter cells to constrain the activity of the topoisomerase IV at the end of the S phase.
Cooper, S., Helmstetter, C.E., Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31 (1968), 519–540.
Donachie, W.D., Begg, K.J., Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J Bacteriol 171 (1989), 4633–4639.
Schaechter, M., Maaloe, O., Kjeldgaard, N.O., Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19 (1958), 592–606.
Hill, N.S., Buske, P.J., Shi, Y., Levin, P.A., A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet, 9, 2013, e1003663 This paper along with [49•] show that two unrelated glucosyltransferases, OpgH in E. coli and UgtP in B. subtilis, coordinate cell size with central metabolism by regulating FtsZ dynamics. In both cases, the glucosyltranferase-dependent regulation of Z-ring assembly requires the binding of the substrate (UDP-glucose). Together, these papers illustrate the convergent evolution of analogous systems to mediate metabolic control of cell size in rapidly growing bacteria.
Weart, R.B., Lee, A.H., Chien, A.C., Haeusser, D.P., Hill, N.S., Levin, P.A., A metabolic sensor governing cell size in bacteria. Cell 130 (2007), 335–347 See comments for [48•].
Chien, A.C., Zareh, S.K., Wang, Y.M., Levin, P.A., Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 86 (2012), 594–610.
Hill, N.S., Zuke, J.D., Buske, P.J., Chien, A.C., Levin, P.A., A nutrient-dependent division antagonist is regulated post-translationally by the Clp proteases in Bacillus subtilis. BMC Microbiol, 18, 2018, 29.
Monahan, L.G., Hajduk, I.V., Blaber, S.P., Charles, I.G., Harry, E.J., Coordinating bacterial cell division with nutrient availability: a role for glycolysis. mBio, 5, 2014 e00935-00914.
Yao, Z., Davis, R.M., Kishony, R., Kahne, D., Ruiz, N., Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 109 (2012), E2561–E2568.
Vadia, S., Tse, J.L., Lucena, R., Yang, Z., Kellogg, D.R., Wang, J.D., Levin, P.A., Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr Biol 27 (2017), 1757–1767 e1755 Data presented in this paper show that fatty acid synthesis is used as a universal mechanism, at least for fast-growing prokaryotic and eukaryotic microorganisms (E. coli, B. subtilis and S. cerevisiae), to determine cell size in a growth rate-dependent way.
Li, S.J., Cronan, J.E. Jr., Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol 175 (1993), 332–340.
Takamura, Y., Nomura, G., Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134 (1988), 2249–2253.
Heinrich, K., Leslie, D.J., Morlock, M., Bertilsson, S., Jonas, K., Molecular basis and ecological relevance of Caulobacter cell filamentation in freshwater habitats. mBio, 10, 2019.
Mueller, E.A., Westfall, C.S., Levin, P.A., pH-dependent activation of cytokinesis modulates Escherichia coli cell size. PLoS Genet, 16, 2020, e1008685 This study characterizes a molecular mechanism that allows cell size adaptation to pH. The authors show that recruitment of the late cell division protein FtsN to the divisome is favoured at acidic pH, thereby explaining why E. coli cells grown under alkaline conditions are longer than the ones grown at acidic pH.
Perez, A.J., Cesbron, Y., Shaw, S.L., Bazan Villicana, J., Tsui, H.T., Boersma, M.J., Ye, Z.A., Tovpeko, Y., Dekker, C., Holden, S., et al. Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 116 (2019), 3211–3220.
Castanheira, S., Cestero, J.J., Rico-Perez, G., Garcia, P., Cava, F., Ayala, J.A., Pucciarelli, M.G., Garcia-Del Portillo, F., A specialized peptidoglycan synthase promotes Salmonella cell division inside host cells. mBio, 8, 2017 This paper shows that Salmonella cells use two PBP3 paralogs to mediate cell division depending on the conditions, a traditional one used during planktonic growth outside from the host and an acidic-sensitive one used during growth in acidified phagosome inside the host.
Ahijado-Guzman, R., Alfonso, C., Reija, B., Salvarelli, E., Mingorance, J., Zorrilla, S., Monterroso, B., Rivas, G., Control by potassium of the size distribution of Escherichia coli FtsZ polymers is independent of GTPase activity. J Biol Chem 288 (2013), 27358–27365.
Mendieta, J., Rico, A.I., Lopez-Vinas, E., Vicente, M., Mingorance, J., Gomez-Puertas, P., Structural and functional model for ionic (K(+)/Na(+)) and pH dependence of GTPase activity and polymerization of FtsZ, the prokaryotic ortholog of tubulin. J Mol Biol 390 (2009), 17–25.
Tadros, M., Gonzalez, J.M., Rivas, G., Vicente, M., Mingorance, J., Activation of the Escherichia coli cell division protein FtsZ by a low-affinity interaction with monovalent cations. FEBS Lett 580 (2006), 4941–4946.
Beaufay, F., Coppine, J., Mayard, A., Laloux, G., De Bolle, X., Hallez, R., A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 34 (2015), 1786–1800 In this paper, the authors show that the catabolic glutamate dehydrogenase (GdhZ) of C. crescentus bound to its substrate (NAD+ or glutamate) interacts with FtsZ to trigger its GTPase activity, thereby stimulating Z-ring disassembly. They also show that the oxidoreductase-like protein KidO bound to NADH inhibits formation of lateral interactions between FtsZ protofilaments.
Radhakrishnan, S.K., Pritchard, S., Viollier, P.H., Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 18 (2010), 90–101.
Beaufay, F., De Bolle, X., Hallez, R., Metabolic control of cell division in alpha-proteobacteria by a NAD-dependent glutamate dehydrogenase. Commun Integr Biol, 9, 2016, e1125052.
Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433 (2005), 531–537.
Noirot-Gros, M.F., Dervyn, E., Wu, L.J., Mervelet, P., Errington, J., Ehrlich, S.D., Noirot, P., An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 99 (2002), 8342–8347.
Krause, K., Maciag-Dorszynska, M., Wosinski, A., Gaffke, L., Morcinek-Orlowska, J., Rintz, E., Bielanska, P., Szalewska-Palasz, A., Muskhelishvili, G., Wegrzyn, G., The role of metabolites in the link between DNA replication and central carbon metabolism in Escherichia coli. Genes (Basel), 11, 2020.
Saxena, R., Fingland, N., Patil, D., Sharma, A.K., Crooke, E., Crosstalk between DnaA protein, the initiator of Escherichia coli chromosomal replication, and acidic phospholipids present in bacterial membranes. Int J Mol Sci 14 (2013), 8517–8537.
Sekimizu, K., Kornberg, A., Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263 (1988), 7131–7135.
Goodwin, R.A., Gage, D.J., Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol 196 (2014), 1901–1907.
Ronneau, S., Caballero-Montes, J., Coppine, J., Mayard, A., Garcia-Pino, A., Hallez, R., Regulation of (p)ppGpp hydrolysis by a conserved archetypal regulatory domain. Nucleic Acids Res 47 (2019), 843–854.
Ronneau, S., Petit, K., De Bolle, X., Hallez, R., Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun, 7, 2016, 11423.